Claim Missing Document
Check
Articles

Klasifikasi Penyakit Daun Tanaman Timun Berbasis Convolutional Neural Network (CNN) Yanto, Maryogi; Siregar, Alda Cendekia; Abdullah, Asrul
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9982

Abstract

Penyakit daun pada tanaman mentimun merupakan salah satu tantangan utama dalam meningkatkan hasil panen, terutama di Kalimantan Barat. Identifikasi penyakit secara manual seringkali tidak akurat dan memakan waktu. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi otomatis untuk penyakit daun mentimun berbasis Convolutional Neural Network (CNN) menggunakan arsitektur VGG-16. Dataset terdiri dari 2.000 citra daun mentimun yang dikategorikan ke dalam lima kelas: Bercak Daun Bakteri, Penyakit Bulai Berbulu, Daun Sehat, Penyakit Mosaik, dan Penyakit Bulai Tepung. Metode yang diterapkan meliputi praproses (pengubahan ukuran, augmentasi, normalisasi), pelatihan model, pengujian, dan evaluasi menggunakan metrik akurasi, presisi, recall, dan skor F1. Model mencapai akurasi 88% pada data pelatihan, 84% pada data validasi, dan 81,50% pada data pengujian. Model yang telah dilatih kemudian diintegrasikan ke dalam aplikasi berbasis web menggunakan Streamlit untuk memfasilitasi klasifikasi interaktif. Hasilnya menunjukkan bahwa Jaringan Saraf Konvolusional (CNN) efektif dalam mengklasifikasikan penyakit daun mentimun secara otomatis dan dapat diterapkan sebagai solusi teknologi di bidang pertanian.
Development of an IoT-based Soil Nutrient Monitoring and GIS Mapping System for Precision Agriculture Asrul Abdullah; Eka Indah Raharjo; Muhammad Iwan; Rizki Faizal; Maryogi
Advance Sustainable Science Engineering and Technology Vol. 7 No. 4 (2025): August-October
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v7i4.2191

Abstract

Agriculture is a field that contributes to Indonesia's economic development.  Unpredictable weather, temperature fluctuations, and the difficulty in assessing soil quality hinder farmers in enhancing crop productivity. The IoT in signifies a beneficial progression that will assist farmers in their endeavors. Precision agriculture is an innovative approach that employs information technology for sustainable agricultural management. This research aims to assess soil nutrients and provide mapping data based on the evaluated agrarian sites. The testing sites are situated in three sub-districts within Kubu Raya Regency: Sungai Kakap, Ambawang, and Rasau Jaya. The soil study indicated a temperature range of 29.40 °C to 36.80 °C. Soil moisture varied from 4 % to 89.10 %. The soil pH varied between 6.90-8.07 PH. The soil salinity was rather modest. Nutrient levels, particularly nitrogen, were slightly lower than those of phosphate and potassium, necessitating fertilizer use to enhance plant vegetative development. Incorporating the Internet of Things onto agricultural land delivers data as real-time monitoring, which will be essential for improving agricultural output. This scalable method mitigates contemporary agricultural difficulties by diminishing environmental impact and enhancing crop resilience. This study facilitates sustainable, intelligent agricultural techniques to address the escalating needs of a swiftly expanding global population.