p-Index From 2020 - 2025
6.847
P-Index
This Author published in this journals
All Journal Jurnal Studi Pemerintahan Politika: Jurnal Ilmu Politik Jurnal Kebijakan Kesehatan Indonesia Jurnal Tapis : Jurnal Teropong Aspirasi Politik Islam Indonesian Journal of Islam and Muslim Societies Episteme: Jurnal Pengembangan Ilmu Keislaman Jurnal Ilmu Sosial dan Ilmu Politik Jurnal Politik Profetik Masyarakat, Kebudayaan dan Politik Journal of Governance and Public Policy JISPO (Jurnal Ilmu Sosial dan Ilmu Politik) Jurnal Studi Komunikasi Journal of Government and Civil Society Otoritas : Jurnal Ilmu Pemerintahan Jurnal Komunikasi Ikatan Sarjana Komunikasi Indonesia Indonesian Journal of Islamic Literature and Muslim Society Dinamisia: Jurnal Pengabdian Kepada Masyarakat JMM (Jurnal Masyarakat Mandiri) Jurnal Ilmiah Ilmu Pemerintahan Paradigma POLISTAAT: Jurnal Ilmu Sosial dan Ilmu Politik Journal of Contemporary Islam and Muslim Societies Reformasi : Jurnal Ilmiah Ilmu Sosial dan Ilmu Politik Jurnal Ilmu Pemerintahan Widya Praja Jurnal Ilmiah Wahana Bhakti Praja Jurnal Ilmiah Tata Sejuta STIA Mataram Moderat The Journal of Society and Media PERSPEKTIF Politea : Jurnal Politik Islam MODERAT: Jurnal Ilmiah Ilmu Pemerintahan Journal of Applied Data Sciences Masyarakat Indonesia Nakhoda: Jurnal Ilmu Pemerintahan Jurnal Pemerintahan dan Kebijakan (JPK) Prosiding Seminar Nasional Program Pengabdian Masyarakat PANDAWA : Jurnal Pengabdian kepada Masyarakat Epistemé: Jurnal Pengembangan Ilmu Keislaman Jurnal Studi Pemerintahan Indonesian Journal of Islamic Literature and Muslim Society Politik Indonesia: Indonesian Political Science Review INJECT Interdisciplinary Journal of Communication Studia Islamika
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Data Sciences

Classification of Political Party Conflicts and Their Mediation Using Modified Recurrent Convolutional Neural Network Riyadi, Slamet; Suradi, Muhamad Arief Previasakti; Damarjati, Cahya; Chen, Hsing-Chung; Al-Hamdi, Ridho; Masyhur, Ahmad Musthafa
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.513

Abstract

The rapid proliferation of political information on the internet has exacerbated conflicts within political parties, including elite disputes, dualism, candidate controversies, and management issues, which can undermine political stability and public trust. To address these challenges, this study introduces the Modified Recurrent Convolutional Neural Network (M-RCNN), an enhanced RCNN model designed to improve classification accuracy and mitigate overfitting by incorporating additional layers and dropout mechanisms. The primary objective of this research is to provide an efficient and accurate framework for classifying political conflicts and mediation strategies, overcoming the limitations of traditional methods, particularly in handling imbalanced datasets and intricate data patterns. Using a dataset of 1,106 Indonesian news articles categorized into four conflict types—elite disputes, management, presidential, and legislative candidate conflicts—and four mediation strategies—leadership decisions, deliberation, legal channels, and none—the data underwent extensive preprocessing, tokenization, and an 80:20 training-testing split. The M-RCNN achieved a conflict classification accuracy of 98.0%, a precision of 99.0%, and a loss of 0.03, significantly outperforming baseline models, including CNN (85.0% accuracy), RNN with LSTM (88.0%), and standard RCNN (85.0%). For mediation strategy classification, the model demonstrated exceptional performance with an accuracy of 99.0%, a precision of 99.0%, and a loss of 0.01, highlighting its robustness and scalability. This study’s novelty lies in its ability to process imbalanced and complex datasets with unparalleled precision and efficiency, providing a practical framework for automated political conflict analysis and mediation. The findings underline the potential of the M-RCNN model to revolutionize political science applications by delivering reliable, fast, and accurate tools for analyzing and resolving political conflicts, thereby contributing to the advancement of artificial intelligence in promoting political stability and fostering public trust.