Nadia Artha Dewi
Department Of Ophthalmology, Faculty Of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia

Published : 22 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 22 Documents
Search

Evaluasi Performasi Ruang Warna pada Klasifikasi Diabetic Retinophaty Menggunakan Convolution Neural Network Dewi, Candra; Santoso, Andri; Indriati, Indriati; Dewi, Nadia Artha; Arbawa, Yoke Kusuma
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021834459

Abstract

Semakin meningkatnya jumlah penderita diabetes menjadi salah satu faktor penyebab semakin tingginya penderita penyakit diabetic retinophaty. Salah satu citra yang digunakan oleh dokter mata untuk mengidentifikasi diabetic retinophaty adalah foto retina. Dalam penelitian ini dilakukan pengenalan penyakit diabetic retinophaty secara otomatis menggunakan citra fundus retina dan algoritme Convolutional Neural Network (CNN) yang merupakan variasi dari algoritme Deep Learning. Kendala yang ditemukan dalam proses pengenalan adalah warna retina yang cenderung merah kekuningan sehingga ruang warna RGB tidak menghasilkan akurasi yang optimal. Oleh karena itu, dalam penelitian ini dilakukan pengujian pada berbagai ruang warna untuk mendapatkan hasil yang lebih baik. Dari hasil uji coba menggunakan 1000 data pada ruang warna RGB, HSI, YUV dan L*a*b* memberikan hasil yang kurang optimal pada data seimbang dimana akurasi terbaik masih dibawah 50%. Namun pada data tidak seimbang menghasilkan akurasi yang cukup tinggi yaitu 83,53% pada ruang warna YUV dengan pengujian pada data latih dan akurasi 74,40% dengan data uji pada semua ruang warna. AbstractIncreasing the number of people with diabetes is one of the factors causing the high number of people with diabetic retinopathy. One of the images used by ophthalmologists to identify diabetic retinopathy is a retinal photo. In this research, the identification of diabetic retinopathy is done automatically using retinal fundus images and the Convolutional Neural Network (CNN) algorithm, which is a variation of the Deep Learning algorithm. The obstacle found in the recognition process is the color of the retina which tends to be yellowish red so that the RGB color space does not produce optimal accuracy. Therefore, in this research, various color spaces were tested to get better results. From the results of trials using 1000 images data in the color space of RGB, HSI, YUV and L * a * b * give suboptimal results on balanced data where the best accuracy is still below 50%. However, the unbalanced data gives a fairly high accuracy of 83.53% with training data on the YUV color space and 74,40% with testing data on all color spaces.
Predicting Cardiovascular Risk in People With Diabetic Retinopathy : Study Using Framingham Risk Score Harahap, Vicia Belladona Carolina; Metita, Mirza; Dewi, Nadia Artha
Majalah Oftalmologi Indonesia Vol 49 No S2 (2023): Supplement Edition
Publisher : The Indonesian Ophthalmologists Association (IOA, Perhimpunan Dokter Spesialis Mata Indonesia (Perdami))

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35749/xqa8m965

Abstract

Introduction: People with type 2 diabetes have an increase risk of cardiovascular disease (CVD). Framingham risk score is used to determine 10 years the risk of CVD in asymptomatic patients for primary prevention. Up to now, there have been no similar studies regarding the risk of CVD in diabetic retinopathy (DR) patients in Indonesia. Therefore, we would like to investigate the corelation between DR and CVD risk through the population using Framingham risk score. Methods: This research is a Population-Based Cross-sectional Study. The data was taken from the villages in Malang Regency. Participant with diabetes aged > 40 was recruited. The available data was then processed according to the variables and assessed using Framingham Risk Score. The scores were classified as high, intermediate, and low risk. Results: From 953 samples there were 155 respondents with Diabetes Mellitus (DM), 23 of them experience DR. There were more female participants than men in DM group without DR (73.9%) and DR group (73.9%). A significant correlation between diabetic retinopathy and CVD risk was found (r=0.407, p=0.001). The risk of CVD in 10 years is low in diabetic patients without retinopathy ( p=0.001), but in patients with diabetic retinopathy, the risk of CVD in 10 years is intermediate-high (p=0.001). Conclusion: There is corelation between Diabetic Retinopathy and risk for cardiovascular disease in intermediate-high category using Framingham risk score.