Claim Missing Document
Check
Articles

Found 23 Documents
Search

Kelimpahan dan Keanekaragaman Fitoplankton Di Danau Siombak Marelan Medan Fariz, Muhammad; Prastowo, Puji; Daulae, Abdul Hakim
BEST Journal (Biology Education, Sains and Technology) Vol 9, No 1 (2026): Juni 2026
Publisher : Program Studi Pendidikan Biologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30743/best.v9i1.12968

Abstract

The organisms that are most affected when pollutants enter the water are phytoplankton, because they can respond quickly to environmental changes and float passively in the water column. Phytoplankton contain chlorophyll, which they use for photosynthesis, so they are also referred to as plant plankton. In addition, phytoplankton play an important role as primary producers and oxygen generators, serving as the main food source for aquatic organisms, particularly zooplankton. The presence of phytoplankton is an indicator of whether a body of water is fertile, and it is also used to determine phytoplankton density in a given area. The phytoplankton community is influenced by physical and chemical factors of the water. A lower level of phytoplankton diversity indicates a higher level of pollution and ecosystem degradation. One of the main causes of aquatic ecosystem damage is water pollution due to accumulated waste.This study aims to analyze species composition, diversity levels, abundance, and the relationship between environmental conditions and phytoplankton abundance in Lake Siombak, Marelan, Medan. Sampling was conducted at five stations representing different activities and water characteristics. Phytoplankton identification was carried out using a Sedgwick Rafter Cell, while the measured physical-chemical parameters included temperature, transparency, pH, DO, and BOD. Data were analyzed using the Shannon–Wiener Index and one-way ANOVA to determine differences in abundance among stations.The results showed that four phytoplankton divisions were found, consisting of a total of 21 species, dominated by Bacillariophyta and Chlorophyta. The phytoplankton diversity level was classified as very good, with an average H’ value of 2.406 and a total value of 2.623, indicating a stable community. Phytoplankton abundance reached an average of 8,608 cells/L, falling into the lightly polluted oligotrophic category. The water quality parameters indicated lightly polluted conditions, with a temperature of 22.38°C, transparency of 26 cm, pH of 6.612, DO of 5.428 mg/L, and BOD of 9.482 mg/L. The ANOVA test showed a significance value of 0.418 (p 0.05), indicating no significant difference in phytoplankton abundance among stations, which reflects relatively homogeneous environmental conditions. Overall, Lake Siombak has a stable phytoplankton community structure, but the waters are in a lightly polluted state, indicating the need for further management to maintain the lake’s ecosystem quality.
Rancang Bangun Sistem Absensi Siswa Berbasis Barcode untuk Peningkatan Akurasi Data Kehadiran SMA IT Yapira Rusmanto, Akbar; Ramadhan, Nabil Gilang; Witama, Fiyado Yudha; Kholik, Abdul; Fariz, Muhammad; Maulana, Zikri; Ramadhan, Rizki; Raffi , Muhammad; Nurmala, Mega; Innayah, Nabila; Ramdani, Dani
APPA : Jurnal Pengabdian Kepada Masyarakat Vol 3 No 3 (2025): APPA : Jurnal Pengabdian kepada Masyarakat (INPRESS)
Publisher : Shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kehadiran siswa merupakan indikator penting kedisiplinan dalam proses akademik. Di SMA IT Yapira, sistem pencatatan kehadiran saat ini masih dilakukan secara konvensional dengan memanggil nama siswa satu per satu (manual roll call). Metode ini sangat tidak efisien karena memakan waktu efektif pembelajaran, rawan kesalahan pencatatan, dan menyulitkan proses rekapitulasi data. Kegiatan pengabdian kepada masyarakat ini bertujuan untuk merancang dan membangun sistem absensi berbasis barcode (QR Code) serta memberikan pelatihan penggunaannya kepada guru dan siswa. Metode pelaksanaan meliputi perancangan sistem selama tiga minggu dan pelatihan intensif selama satu hari. Hasil dari kegiatan ini adalah tersedianya sistem absensi digital yang memungkinkan pencatatan kehadiran secara instan melalui pemindaian kartu pelajar, menggantikan metode pemanggilan manual yang lambat. Penerapan sistem ini terbukti meningkatkan efisiensi waktu jam pelajaran dan validitas data absensi.
Prediksi Durasi Perjalanan Taxi NYC Menggunakan Regression Model Bunga, Azaria; Fariz, Muhammad; Firdaus, Muhammad Riyad; Rosyani, Perani
AI dan SPK : Jurnal Artificial Intelligent dan Sistem Penunjang Keputusan Vol. 3 No. 2 (2025): Jurnal AI dan SPK : Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan
Publisher : CV. Shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Prediksi durasi perjalanan transportasi urban merupakan aspek penting dalam meningkatkan efisiensi operasional dan kualitas layanan. New York City Yellow Taxi menyediakan dataset perjalanan dalam jumlah besar yang dapat dimanfaatkan untuk membangun model prediksi berbasis machine learning. Penelitian ini mengembangkan sistem prediksi durasi perjalanan menggunakan empat algoritma: Linear Regression, Random Forest, Gradient Boosting, dan XGBoost. Dataset diproses melalui tahap preprocessing, feature engineering, dan  pembagian  data  menjadi training dan testing  set.  Hasil  penelitian  menunjukkan bahwa XGBoost memberikan performa terbaik dengan MAE 189,23 detik, RMSE 287,91 detik, dan R² sebesar 0,8657, mengungguli model lainnya. Faktor paling berpengaruh terhadap durasi perjalanan meliputi trip_distance, haversine_distance, dan hour_of_day. Sistem yang dibangun memungkinkan prediksi real-time serta analisis data secara komprehensif. Penelitian ini membuktikan bahwa algoritma tree- based boosting, khususnya XGBoost, efektif digunakan dalam memodelkan dinamika durasi perjalanan taxi di lingkungan urban yang kompleks.