Claim Missing Document
Check
Articles

IMPACT OF SOLAR RADIATION MODIFICATION ON TEMPERATURE CHANGES FROM SINABUNG ERUPTION IN KARO REGENCY Koesuma, Sorja; Sakhina, Friska Ayu; Gernowo, Rahmat
JOURNAL ONLINE OF PHYSICS Vol. 11 No. 1 (2025): JOP (Journal Online of Physics) Vol 11 No 1
Publisher : Prodi Fisika FST UNJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jop.v11i1.47783

Abstract

This study combines reanalysis of observational data and climate modelling to examine temperature changes due to the eruption of Mount Sinabung and future temperature projections. Observation data were taken from ERA5 to identify local temperature changes following the Sinabung eruption in February 2018, while simulations from the Geoengineering Model Intercomparison Project (GeoMIP) were used to observe temperature responses under the Solar Radiation Modification (SRM) scenario. Temperature projections were conducted for the period 2026 – 2099 using the CESM-WACCM, CNRM-ESM2-1, and MPI-ESM1-2-LR models under the G6Solar, G6Sulfur, SSP2-4.5, and SSP5-8.5 scenarios. The results show that GeoMIP temperatures are lower than ERA5 after bias correction. SRM was found to effectively decrease temperature at the summit of Sinabung and Karo Regency, approaching low emission scenarios (SSP2-4.5), with increases of 1,90℃ and 1,05℃ under G6Solar, and 1,02℃ and 0,96℃ under G6Sulfur. Conversely, in the high emission scenarios (SSP5-8.5), temperatures increased to 2,13℃ and 2,1℃.
Combination of Matrix Simple Additive Weighting Algorithm (SAW) on the Reference URICA-Scale to Measure Readiness for Change in Narcotic Rehabilitation Patients Soni Adiyono; Rahmat Gernowo; Adi Wibowo
Jurnal Aisyah : Jurnal Ilmu Kesehatan Vol 7, No S1 (2022): Suplement 1
Publisher : Universitas Aisyah Pringsewu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (775.939 KB) | DOI: 10.30604/jika.v7iS1.1118

Abstract

This study aims to design a matrix combination in the URICA-Scale calculation and the simple additive weighting (SAW) method that can be used as a measuring tool to evaluate the readiness of drug rehabilitation patients using the University of Rhode Change Assessment Scale (URICA-Scale) as a desire combined with simple additive weighting (SAW) method in order to facilitate the design of electronic information systems regarding assessment tests with reference to URICA-Scale. In software development, the design modeling step in the system is one part of the (System Development Life Cycle) contained in the Waterfall model. The results of this study are able to provide an arrangement of calculation matrices where the combination of these matrices contributes to programmers in implementing them into certain programming languages. Abstrak: Penelitian ini bertujuan untuk merancang desain kombinasi matriks pada perhitungan URICA-Scale dan metode simple additive weighting (SAW) yang dapat digunakan sebagai alat ukur guna mengevauasi tentang kesiapan pasien rehabilitasi narkotika dengan menggunakan University of Rhode Change Assesment Scale (URICA-Scale) sebagai acuan yang dikombinasikan dengan metode simple additive weighting (SAW) agar dapat mempermudah dalam merancang sistem informasi elektronik mengenai tes asesmen dengan acuan URICA-Scale. Dalam pengembangan perangkat lunak langkah pemodelan desain pada sistem merupakan salah satu bagian dari (System Development Life Cycle) yang terdapat pada model Waterfall. Hasil penelitian ini mampu memberikan susunan matrix perhitungan dimana dengan adanya gabungan dari matriks tersebut memberikan kontribusi bagi programmer dalam melakukan implementasi kedalam Bahasa pemrograman tertentu.
Kombinasi Feature Selection Fisher Score dan Principal Component Analysis (PCA) untuk Klasifikasi Cervix Dysplasia Widagdo, Krisan Aprian; Adi, Kusworo; Gernowo, Rahmat
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 3: Juni 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020702987

Abstract

Pengamatan citra Pap Smear merupakan langkah yang sangat penting dalam mendiagnosis awal terhadap gangguan servik. Pengamatan tersebut membutuhkan sumber daya yang besar. Dalam hal ini machine learning dapat mengatasi masalah tersebut. Akan tetapi, keakuratan machine learning bergantung pada fitur yang digunakan. Hanya fitur relevan dan diskriminatif yang mampu memberikan hasil klasifikasi akurat. Pada penelitian ini menggabungkan Fisher Score dan Principal Component Analysis (PCA). Pertama Fisher Score memilih fitur relevan berdasarkan perangkingan. Langkah selanjutnya PCA mentransformasikan kandidat fitur menjadi dataset baru yang tidak saling berkorelasi. Metode jaringan syaraf tiruan Backpropagation digunakan untuk mengevaluasi performa kombinasi Fisher Score dan PCA. Model dievaluasi dengan metode 5 fold cross validation. Selain itu kombinasi ini dibandingkan dengan model fitur asli dan model fitur hasil Fscore. Hasil percobaan menunjukkan kombinasi fisher score dan PCA menghasilkan performa terbaik (akurasi 0.964±0.006, Sensitivity 0.990±0.005 dan Specificity 0.889±0.009). Dari segi waktu komputasi, kombinasi Fisher Score dan PCA membutuhkan waktu relative cepat. Penelitian ini membuktikan bahwa penggunaan feature selection dan feature extraction mampu meningkatkan kinerja klasifikasi dengan waktu yang relative singkat. Abstract Examination Pap Smear images is an important step to early diagnose cervix dysplasia. It needs a lot of resources. In this case, Machine Learning can solve this problem. However, Machine learning depends on the features used. Only relevant and discriminant features can provide an accurate classification result. In this work, combining feature selection Fisher Score (FScore) and Principal Component Analysis (PCA) is applied. First, FScore selects relevant features based on rangking score. And then PCA transforms candidate features into a new uncorrelated dataset. Artificial Neural Network Backpropagation used to evaluate performance combination FScore PCA. The model evaluated with 5 fold cross validation. The other hand, this combination compared with original features model and FScore model. Experimental result shows the combination of Fscore PCA produced the best performance (Accuracy 0.964±0.006, Sensitivity 0.990±0.005 and Specificity 0.889±0.009). In term of computational time, this combination needed a reasonable time. In this work, it was proved that applying feature selection and feature extraction could improve performance classification with a promising time.
Pengukuran Tingkat Kapabilitas Sistem Tata Kelola TI Menggunakan Cobit 5 dengan ISO 38500 Ardima, Muhammad Basyier; Gernowo, Rahmat; Slamet, Vincencius Gunawan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 3: Juni 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020703059

Abstract

Abstrak Penggunaan sistem informasi dan teknologi informasi pada suatu organisasi sangat dibutuhkan karena sistem informasi sangat berpengaruh dalam menunjang kinerja suatu organisasi. Tata kelola sistem informasi sangat dibutuhkan untuk mencapai penyelenggaraan institusi yang lebih efisien dan efektif. Unit Pelaksanaan Teknis Teknologi Informasi dan Komunikasi (UPT TIK) Universitas Negeri Semarang (Unnes) memiliki beberapa bagian divisi yaitu divisi data, sistem informasi dan layanan, dan infrastruktur. Penelitian ini menggunakan COBIT 5 dengan ISO 38500 untuk audit sistem informasi tata kelola TI pada UPT TIK. Tujuan penelitian ini untuk mengukur tingkat kapabilitas tata kelola TI sehingga dapat dijadikan acuan dalam memperbaiki sistem tata kelola TI. Data penelitian diperoleh dari UPT TIK berupa visi misi institusi dengan dokumen pendukung antara lain dokumen rencana kerja dan kuisioner. Dari hasil penelitian audit menggunakan COBIT 5 dengan ISO 38500 diperoleh 17 Domain COBIT 5 dengan tingkat kapabilitas 2. Hal ini berarti pada tingkat managed proses, institusi telah melakukan perencanaan, pengontrolan dan penyesuaian terhadap proses TI yang sedang berlangsung. Penelitian ini menghasilkan nilai GAP sebesar 1 yang diperoleh dari selisih antara target yaitu 3 dengan tingkat kapabilitas sebesar 2. Dengan ini dapat dikatakan bahwa kombinasi COBIT 5 dan ISO 38500 dapat dijadikan acuan dalam memperbaiki sistem tata kelola TI. Abstract The usage of information systems and information technology in an organization is essential since information system is very important in supporting the performance of an organization. Information system governance is required to attain more efficient and effective performance of institutions. The technical implementation unit of information technology and communication (UPT TIK) State University of Semarang (Unnes) having several divisions that is the data division, information systems and services, and the infrastructure. This study applied COBIT 5 with ISO 38500 to audit information system of IT governance of UPT TIK. The purpose of this research is to measure the capabilities of IT governance so it can be used as reference in improving the information system management. The research data is obtained from UPT TIK in form of the vision and mission of institution with the supporting documents such as the document of work plan and questionnaires. The audit research using COBIT 5 with ISO 38500 obtained 17domains COBIT 5 with a capability level of 2. This means on the managed process level, institution have done planning, control and adjustments to the Information Technology on-going process. This research gained a GAP value of 1 from the margin between the targets of 3 with a capability level of 2. Therefore, it can be described that the combination of COBIT 5 and ISO 38500 can be used as a reference in improving IT governance systems.
Analisis Pengaruh Model HOT-Fit Terhadap Pemanfaatan Sistem Informasi Kinerja Anggaran Gumay, Naretha Kawadha Pasemah; Gernowo, Rahmat; Nurhayati, Oky Dwi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 4: Agustus 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020743410

Abstract

Sistem informasi kinerja anggaran digunakan untuk memantau kinerja anggaran di fakultas Universitas Sriwijaya berdasarkan Indikator Kinerja Pelaksanaan Anggaran. Analisis pengaruh sistem menggunakan model Human, Organization, and Technology-Fit (HOT-Fit) dilakukan untuk menganalisis keberhasilan penerapan sistem, ketiga komponen penilaian tersebut mendapatkan net benefit berupa dampak sistem. Model HOT-Fit dalam penelitian ini memiliki delapan variabel, yaitu System Development (SD), System Use (SU), User Satisfaction (US), Structure (STR), Environment (LO), System Quality (SQ), Information Quality (IQ), dan Service Quality (SEQ). Jumlah sampel responden adalah 59, teknik analisis menggunakan PLS-SEM yang terdapat dua tahapan analisis. Pertama, measurement model digunakan untuk menguji reliabilitas dan validitas. Reliabilitas diambil dari nilai loading factor dan composite reliability yang memiliki nilai di atas 0,7, sedangkan validitas memiliki nilai di atas 0,5 dari AVE dan cross-loading indikator dimana nilai konstruk semua variabel lebih tinggi dari korelasi konstruk blok lain. Kedua, structural model diambil dari hasil uji path coefficient, coefficient of determination, dan t-test. Path coefficient terdapat empat jalur yang tidak signifikan (LO→SD, LO→SU, SD→SU, dan SQ→US) memiliki nilai dibawah 0,1. Coefficient of determination terdapat enam variabel dengan tingkat kuat dengan nilai sekitar 0,670 (LO, SD, SU, US, IQ, dan SQ) dan satu tingkat moderat dengan nilai sekitar 0,333 (STR). T-test terdapat dua belas hipotesis yang diterima dari sembilan belas hipotesis yang memiliki nilai lebih besar dari 1,96. Faktor-faktor yang paling kuat memengaruhi keberhasilan sistem adalah SU, US, STR, LO, dan SEQ. AbstractBudgeting performance information system is used to monitor budget performance at the faculty of Sriwijaya University based on Budget Implementation Performance Indicator. An analysis using Human, Organization, and Technology-Fit (HOT-Fit) model is conducted to analize the system implementation, those components get a net benefit as impact. The studied model has eight variables, System Development (SD), System Use (SU), User Satisfaction (US), Structure (STR), Environment (LO), System Quality (SQ), Information Quality (IQ), and Service Quality (SEQ). With 59 respondents, two stage of PLS-SEM technique is used for analysis. Firstly, measurement models for reliability and validity. Reliability is set from loading factor and composite reliability which values above 0.7, while the validity from AVE which values above 0.5 and cross-loading indicators where the block constructs from all variables higher than the correlation with others. Secondly, structural model, taken from the path coefficient, coefficient of determination, and t-test results, which have four insignificant pathways (LO→SD, LO→SU, SD→SU, SQ→US) which values below 0,1. The Coefficient of determination test has six variables with strong levels which values about 0,670 (LO, SD, SU, US, IQ, and SQ) and one moderate levels which values about 0,333 (STR). The T-test contained twelve accepted hypotheses from the nineteen hypotheses which values bigger than 1,96. The factors that strongly affect the success of the system are SU, US, STR, LO, and SEQ. 
Fuzzy-AHP MOORA approach for vendor selection applications Al Khoiry, I’tishom; Gernowo, Rahmat; Surarso, Bayu
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 8 No 1 (2022): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v8i1.2356

Abstract

Vendor selection is a critical activity in order to support the achievement of company success and competitiveness. Significantly, the company has some specific standards in the selection. Therefore, an evaluation is needed to see which vendors match the company's criteria. The purpose of this study is to evaluate and select the proposed vendor in a web-based decision support system (DSS) by using the fuzzy-AHP MOORA approach. The fuzzy-AHP method is used to determine the importance level of the criteria, while the MOORA method is used for alternative ranking. The results showed that vendor 4 has the highest score than other alternatives with a value of 0.2536. Sensitivity analysis showed that the proposed DSS fuzzy-AHP MOORA concept was already solid and suitable for this problem, with a low rate of change.
Enhancing Bank Financial Performance Assessment: A Literature Review of Deep Learning Applications Using the Kitchenham Method Ali, Mahrus; Gernowo, Rahmat; Warsito, Budi; Muthmainah, Faliha
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 11 No 1 (2025): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v11i1.4224

Abstract

The assessment of bank financial performance is crucial for ensuring the stability of the banking sector. With advancements in technology, especially deep learning (DL), there is increasing potential to improve the accuracy of risk prediction and financial performance evaluation in banks. However, challenges related to data imbalance and model complexity require more efficient approaches. This study aims to examine the application of DL in assessing bank financial performance, with a focus on credit risk, fraud detection, and bankruptcy prediction. A Systematic Literature Review (SLR) was conducted using the Kitchenham approach, analyzing 697 relevant articles to address nine research questions regarding the implementation of DL in the banking sector. This study contributes by providing insights into effective DL models that enhance financial performance and risk prediction in banks, while also offering recommendations for the development of more transparent models. The results indicate that models such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) perform well in handling large financial data. Additionally, hybrid models that combine DL with traditional models demonstrate higher accuracy in bankruptcy prediction and fraud detection.
Comparison Analysis of Nearest Road Calculations on Dijkstra Algorithm and A*(A-Star) Algorithm for Mapping BTS Tower Area Hidayat, Agung Rahmad; Gernowo, Rahmat; Sugiharto, Aris
Journal of Social Research Vol. 2 No. 10 (2023): Journal of Social Research
Publisher : International Journal Labs

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55324/josr.v2i10.1391

Abstract

BTS (Base Transceiver Station) is a telecommunications infrastructure in the form of a tower with a transmitting antenna that facilitates wireless communication between communication devices and operator networks. BTS as a signal receiver and transmitter, its existence must be known to a user, such as maintenance staff and BTS tower operation staff to deal with existing problems. So a special system is needed for users to use in determining the closest path between the user and the location of the BTS tower. The purpose of this study is to make it easier for the user to determine the shortest path to the intended BTS tower location and to analyze the Dijkstra algorithm and the A* algorithm in determining the shortest route between the user's location and the location of the Telkomsel BTS tower in Semarang, Central Java. The results obtained from the 82 test data tested with the information system created show that Dijkstra's algorithm is more efficient than the A* algorithm. Validation is carried out by calculating with the system between the user's location and 82 test data or the location of BTS towers in the city of Semarang. The results of the validation carried out explained that the system was running according to the functions made and the results of the calculations carried out by the system were appropriate.
A Systematic Review of Deep Learning for Intelligent Transportation Systems with Analysis and Perspectives Hendrawan, Aria; Gernowo, Rahmat; Nurhayati, Oky Dwi; Dewi, Christine
JURNAL INFOTEL Vol 16 No 2 (2024): May 2024
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v16i2.1085

Abstract

This study presents a systematic review of deep learning for intelligent transportation systems. Statistics are used to find the most cited articles, and the number of articles and quotes are used to find the most productive and influential authors, institutions, and countries or regions. Key topics and patterns of change are discovered using the authors’ keywords, and the most common issues and themes are revealed using flow maps and showing the corresponding trends. A co-occurrence keyword network is also developed to present the research landscape and hotspots in the field. The results explain how publications have changed over the past seven years. Researchers can use this study to have a deeper understanding of the current state and future trends in the role of deep learning in intelligent transportation systems.
Decision Prioritization with MCDM in Post-Disaster Management: A PRISMA-Guided Systematic Review and Bibliometric Mapping Pinem, Agusta Praba Ristadi; Gernowo, Rahmat; Koesuma, Sorja
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 15 No. 01 (2026): JANUARY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v15i01.2528

Abstract

Prioritizing post-disaster actions requires balancing multiple, often conflicting criteria. To consolidate scattered evidence, this study reviews decision prioritization with Multi-Criteria Decision-Making (MCDM) in post-disaster management using a PRISMA-guided systematic review and bibliometric mapping. Initial searches returned 18,454 records from Scopus, 47,206 from Google Scholar, 650 from Emerald Insight, 30,975 from ProQuest, and 4,468 from IEEE Xplore. We included English-language articles published between 2014 and 2025—a window chosen to capture the rise of hybrid and fuzzy variants and early integrations with GIS, AI, and big data—that apply MCDM to prioritizing projects, interventions, or sites. We excluded non-English items, duplicates, and incomplete records; screening and eligibility followed PRISMA. We combined SLR procedures with bibliometric analysis in VOSviewer and R-bibliometrix to map co-occurrence. From the pool, 32 studies met the criteria. Distance-based methods (TOPSIS, VIKOR, EDAS) and AHP dominate; hybrid and fuzzy variants are increasing. Objective and mixed weighting are common, while normalization choices and ranking rules vary by context. Validation is uneven: case applications and expert judgment are common, but sensitivity tests and cross-method comparisons are scarce. We connect objectives, weighting and normalization, ranking, and validation, identify method–context fit, and spotlight reporting gaps. We provide method-selection cues and a reporting checklist for practitioners, and a roadmap for standardized validation, transparent parameterization, and integration with GIS, AI, and big data for researchers.
Co-Authors Adi Wibowo Adiyono, Soni Agus Setyawan Agus Sutejo Agusta Praba Ristadi Pinem Ahmad Lubis Ghozali Aldi Setiawan, Aldi Andryani, Ria Annisa Luthfianti Panular Ardima, Muhammad Basyier Arfriandi, Arief Ari Bawono Putranto Aria Hendrawan, Aria Aries Dwi Indriyanti, Aries Dwi Aris Sugiharto Atik Zilziana Muflihati Noor Bayong Tjasyono H. Kasih Bayu Surarso Beta Noranita Budi Prasetiyo, Budi Budi Warsito Budi Warsito Catur Edi Widodo Cholil, Saifur Rohman Christine Dewi D Febrianty Dafiz Adi Nugroho Dedy Kurniadi Edi Surya Negara Eko Nur Hidayat Eko Sediyono F M Arif Faliha Muthmainah Fauzan Ishlakhuddin Frysca Putti Muviana Ghufron Ghufron Gumay, Naretha Kawadha Pasemah Hengki Hengki Heri Mulyanti Hidayat, Agung Rahmad I. Istadi Ikhthison Mekongga Iryanto Iryanto Ismi Dian Kusumawardhani Isnain Gunadi Istadi I’tishom Al Khoiry Khusnah, Miftakhul Koesuma, Sorja Kuresih, Kuresih Kurnia Adi Cahyanto Kusworo Adi M. Solehuddin Mahrus Ali Michael Andreas Purwoadi Moh Ali Fikri Muchammad A Rofik Mulyani, Esti Munengsih Sari Bunga Munji Hanafi Nabiel Putra Adam, Nabiel Putra Novita Mariana Nuriyana Muthia Sani Nuriyana Muthia Sani Nursamsiah Nursamsiah Oky Dwi Nurhayati Prayitno R. Rizal Isnanto Radini Sinta, Radini Ratih Rundri Utami Rosyalia, Syofi Sakhina, Friska Ayu Setiabudi, Nur Andi Shahmirul Hafizullah Imanuddin Siti Yuniar Pangestu Slamet, Vincencius Gunawan Suryono Suryono Syibli, Mohammad Tri Mulyono Triyono, Liliek Victor Gayuh Utomo Wahyu Jatmiko Wahyul Amien Syafei Wicaksana, Hilman Singgih Widagdo, Krisan Aprian Widiyatmoko, Carolus Borromeus Wulandari, Rosita Ayu Yenny Ernitawati Zaenal Arifin