p-Index From 2020 - 2025
13.096
P-Index
This Author published in this journals
All Journal International Journal of Public Health Science (IJPHS) Jurnal Ilmu Pertanian Indonesia Jurnal Ekonomi Pembangunan JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI Jurnal Sains dan Teknologi Techno.Com: Jurnal Teknologi Informasi CAUCHY: Jurnal Matematika Murni dan Aplikasi JAM : Jurnal Aplikasi Manajemen Jurnal TIMES Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Kubik Journal of Accounting and Investment JURNAL KOLABORASI JIMKesmas (Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat) Al-Jabar : Jurnal Pendidikan Matematika Desimal: Jurnal Matematika Indonesian Journal of Artificial Intelligence and Data Mining BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING Journal of Socioeconomics and Development Jurnal Informatika Universitas Pamulang J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Teorema: Teori dan Riset Matematika Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications Ecces: Economics, Social, and Development Studies Inferensi Journal of Data Science and Its Applications International Journal of Science, Engineering and Information Technology Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Jurnal Statistika dan Aplikasinya KUBIK: Jurnal Publikasi Ilmiah Matematika Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi MATH LOCUS: Jurnal Riset dan Inovasi Pendidikan Matematika PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam SRIWIJAYA JOURNAL OF ENVIRONMENT MATHunesa: Jurnal Ilmiah Matematika VARIANSI: Journal of Statistics and Its Application on Teaching and Research Aceh International Journal of Science and Technology Jurnal Sains dan Informatika : Research of Science and Informatic STATISTIKA Scientific Journal of Informatics Jurnal Pendidikan Progresif Indonesian Journal of Statistics and Its Applications Jurnal Info Kesehatan
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Scientific Journal of Informatics

Village Potential Mapping: Comprehensive Cluster Analysis of Continuous and Categorical Variables with Missing Values and Outliers Dataset in Bogor, West Java, Indonesia Nafisa Berliana Indah Pratiwi; Indahwati; Anwar Fitrianto
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.3903

Abstract

Purpose: This research emphasizes the need to map villages' conditions and identify village potentials, evaluate the effectiveness of development capability, and address the rural-urban development gap with clustering algorithms. The study employs the village development index (IPD) indicators obtained from the village potential dataset, with various numerical and categorical indicators, to capture both tangible and intangible aspects of village potential. Challenges such as missing data and outliers in IPD data collection can be found. The study aims to evaluate the effectiveness of clustering algorithms, with integrated and separated imputation processes, in handling these data issues and to track the development of villages in the Bogor Regency, West Java, Indonesia, based on the village’s potential (PODES) dataset. Methods: Three clustering algorithms, such as k-prototype, simple k-medoids, and Clustering of Mixed Numerical and Categorical Data with Missing Values (k-CMM) are compared. The pre-processing data, which is the imputation process for the first two algorithms, is conducted separately, while the k-CMM has an integrated imputation process. Both imputation stages are tree-based algorithms. Cluster evaluation is based on internal criteria and external criteria. Clusters resulting from the k-prototype and simple k-medoids are selected by internal validity indices and compared to k-CMM using external validity indices for several numbers of clusters (k = 3,4,5). Result: According to data exploration, the IPD of Bogor Regency, West Java, Indonesia dataset contains ± 5% of outliers and six missing values in some chosen variables. Tree-based imputation methods are applied separately in k-prototype and simple k-medoids, jointly in k-CMM. Based on the elbow and gap statistics methods, this research aims to determine the optimum number of clusters k = 3. The internal validity indices performed on k-prototype and simple k-medoids resulting in three clusters (k = 3) are optimum. Trials on several clusters (k = 3,4,5) for three algorithms show that the k-prototype with k = 3 performs the best and is most stable among the two other algorithms with IPD datasets containing many outliers; external validity indices evaluate cluster results. Novelty: This research addresses issues commonly found in mixed datasets, including outliers and missing values, and how to treat problems before and during cluster analysis. An improvement of Gower distance is applied in the medoid-based clustering algorithm, and the k-CMM algorithm is the first algorithm to integrate the imputation process and clustering analysis, which is interesting to explore this algorithm’s performance in clustering analysis.
Performance of Ensemble Learning in Diabetic Retinopathy Disease Classification Anisa Nurizki; Anwar Fitrianto; Agus Mohamad Soleh
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.4725

Abstract

Purpose: This study explores diabetic retinopathy (DR), a complication of diabetes leading to blindness, emphasizing early diagnostic interventions. Leveraging Macular OCT scan data, it aims to optimize prevention strategies through tree-based ensemble learning. Methods: Data from RSKM Eye Center Padang (October-December 2022) were categorized into four scenarios based on physician certificates: Negative & non-diagnostic DR versus Positive DR, Negative versus Positive DR, Non-Diagnosis versus Positive DR, and Negative DR versus non-Diagnosis versus Positive DR. The suitability of each scenario for ensemble learning was assessed. Class imbalance was addressed with SMOTE, while potential underfitting in random forest models was investigated. Models (RF, ET, XGBoost, DRF) were compared based on accuracy, precision, recall, and speed. Results: Tree-based ensemble learning effectively classifies DR, with RF performing exceptionally well (80% recall, 78.15% precision). ET demonstrates superior speed. Scenario III, encompassing positive and undiagnosed DR, emerges as optimal, with the highest recall and precision values. These findings underscore the practical utility of tree-based ensemble learning in DR classification, notably in Scenario III. Novelty: This research distinguishes itself with its unique approach to validating tree-based ensemble learning for DR classification. This validation was accomplished using Macular OCT data and physician certificates, with ETDRS scores demonstrating promising classification capabilities.
Comparison of Extremely Randomized Survival Trees and Random Survival Forests: A Simulation Study Mohamad Solehudin Zaenal; Anwar Fitrianto; Hari Wijayanto
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.8464

Abstract

Abstract. Purpose: This simulation study investigates the Extremely Randomized Survival Trees (EST) model, a machine learning technique expected to handle survival analysis, particularly in large survival datasets, effectively. The study compares the performance of the EST model with that of the Random Survival Forest (RSF) model, focusing on the C-index value to determine which model performs better. Methods: The analysis begins with the generation of 540 simulated datasets, created by combining three levels of sample sizes, two levels of censoring proportions, three types of hazard functions, and 30 repetitions for each scenario. The simulation data were split into 80% training and 20% testing data. The training data were used to build the EST and RSF models, while the test data were used to evaluate their performance. The model with the highest C-index value was deemed the best performer, as a higher C-index indicates superior model performance. Result: The results indicate that the sample size, type of hazard function, and the method used influence that model performance. The EST model significantly outperformed the RSF model when the sample size was large, though no significant difference was observed when the sample size was small or medium. Additionally, the EST model consistently demonstrated faster computation times across all simulation scenarios. Novelty: This study provides a pioneering exploration into applying decision tree algorithms, specifically EST and RSF, in survival analysis. While these methods have been extensively studied in regression and classification contexts, their application in survival analysis remains relatively unexplored.
Classification Performance of Stacking Ensemble with Meta-Model of Categorical Principal Component Logistic Regression on Food Insecurity Data Pangestika, Dhita Elsha; Fitrianto, Anwar; Sadik, Kusman
Scientific Journal of Informatics Vol. 11 No. 4: November 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i4.15315

Abstract

Purpose: Stacking is one type of ensemble whose base-models use different algorithms. The classification results from its base-models are categorical and tend to be associated with each other. They then become input for the stacking meta-model. However, there are no currently definite rules for determining the classifier that becomes the meta-model in stacking. On the other hand, recent research has found that CATPCA-LR can work well on categorical predictor variables associated with each other. Therefore, this study focuses on the classification performance of the stacking algorithm with the CATPCA-LR meta-model. Methods: The study compared the classification performance stacking with CATPCA-LR meta-model to stacking with other meta-models (random forest, gradient boost, and logistic regression) and its base-models (random forest, gradient boost, extreme gradient boost, extra trees, light gradient boost). This research used food insecurity data from March 2022. Result: The stacking algorithm with the CATPCA-LR meta-model performs better insecurity data regarding sensitivity, balanced accuracy, F1-Score, and G-Means values. This model offers a sensitivity of 46.28%, a balanced accuracy of 59.82%, an F1-Score of 37.82%, and a G-Means of 58.26%. Meanwhile, regarding specificity values, the light gradient boost (LGB) algorithm gives the highest value compared to other algorithms. This model provides a specificity value of 88.40%. Generally, the stacking with the CATPCA-LR meta-model algorithm provides the best performance compared with other algorithms on food insecurity data. Novelty: This research has explored a stacking classification performance with CATPCA-LR as meta-model.
Co-Authors A. A., Muftih Aam Alamudi Abd. Rahman Adeline Vinda Septiani Agung Tri Utomo Agus M Soleh Agus Mohamad Soleh Ahmad Syauqi Alfa Nugraha Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfi Indah Nurrizqi Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amalia Kholifatunnisa Amanda, Nabila Amatullah, Fida Fariha Amelia, Reni Amir Abduljabbar Dalimunthe Anadra, Rahmi Anang Kurnia Anang Kurnia Anik Djuraidah Anisa Nurizki Annisa Putri Utami Annissa Nur Fitria Fathina Ardhani, Rizky Aristawidya, Rafika Asri Pratiwi, Asri Assyifa Lala Pratiwi Hamid Azis, Tukhfatur Rizmah Aziza, Vivin Nur Bagus Sartono Budi Susetyo Budi Susetyo Budi Susetyo Budi Susetyo Bukhari, Ari Shobri Cahya Alkahfi Daswati, Oktaviyani Defri Ramadhan Ismana Deri Siswara Dessy Rotua Natalina Siahaan Dessy Siahaan Devi Permata Sari Dian Handayani Dwi Jumansyah, L.M. Risman Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Fadilah, Anggita Rizky Fajar Athallah Yusuf Farit M Affendi Farit M. Afendi Farit Mochamad Afendi Fatimah Fatimah Fauziah, Monica Rahma Fulazzaky, Tahira Ghina Fauziah Gustiara, Dela Hari Wijayanto Harismahyanti A., Andi Hasnataeni, Yunia Hasnita Hasnita Heri Cahyono I Made Sumertajaya Ilham Azagi Ilmani, Erdanisa Aghnia Imam Hanafi Indah, Yunna Mentari Indahwati Indahwati Indahwati Indahwati, Indahwati Irsyifa Mayzela Afnan Irzaman, Irzaman Ismah, Ismah Isna Shofia Mubarokah Iswan Achlan Setiawan Iswati Jamaluddin Rabbani Harahap Jap Ee Jia Jia, Jap Ee Jumansyah, L. M. Risman Dwi Jumansyah, L.M. Risman Dwi Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnia N. K. Khusnia Nurul Khikmah Kriswan, Suliana Kusman Sadik L.M. Risman Dwi Jumansyah L.M. Risman Dwi Jumansyah La Ode Abdul Rahman La Ode Abdul Rahman Lai Ming Choon Linganathan, Punitha lmam Hanafi M. Aiman Askari M.S, Erfiani Marshelle, Sean Megawati Megawati Mohamad Solehudin Zaenal Muftih Alwi Aliu Muftih Alwi Aliu Muhadi, Rizqi Annafi Muhammad Farhan Zahid Muhammad Irfan Hanifiandi Kurnia mutiah, siti Nabila Ghoni Trisno Hidayatulloh Nadira Nisa Alwani Nafisa Berliana Indah Pratiwi Nashir, Husnun Nisa Nur Aisyah Novi Hidayat Pusponegoro Nugraha, Adhiyatma Nur Hidayah Nur Khamidah Pangestika, Dhita Elsha Pika Silvianti Pika Silvianti Pradnya Sri Rahayu Punitha Linganathan Putri Auliana Rifqi Mukhlashin Putri, Oktaviani Aisyah Rachmat Bintang Yudhianto Rafika Aufa Hasibuan Rahmatun Nisa, Rahmatun Rais Reka Agustia Astari Reni Amelia Reni Amelia Retna Nurwulan Riansyah, Boy Rifda Nida’ul Labibah Riska Yulianti, Riska Rizki Manaf, Silmi Anisa Rizki, Akbar Rizqi, Tasya Anisah Sachnaz Desta Oktarin salsa bila Seta Baehera Setyowati, Silfiana Lis Siau Hui Mah Siau Man Mah Silmi Annisa Rizki Manaf Silmi Annisa Rizki Manaf Siregar, Indra Rivaldi Siti Hafsah Siti Hasanah Siti Nur Azizah, Siti Nur Sofia Octaviana Sony Hartono Wijaya Suantari, Ni Gusti Ayu Putu Puteri Suliana Kriswan Tahira Fulazzaky Titin Agustina Titin Yuniarty Yuniarty Uswatun Hasanah Utami Dyah Syafitri Vitona, Desi Vivin Nur Aziza Waliulu, Megawati Zein Wan Muhamad, Wan Zuki Azman Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Waode, Yully Sofyah Winata, Hilma Mutiara Xin, Sim Hui Yenni Angraini Yuniarsyih R.A, Rizqi Dwi Zein Rizky Santoso