Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Artificial Intelligence and Engineering Applications (JAIEA)

House Price Prediction Analysis Using a Comparison of Machine Learning Algorithms in the Jabodetabek Area Ningsih, Indah Ratna; Faqih, Ahmad; Rinaldi, Ade Rizki
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.733

Abstract

Jabodetabek, as the largest metropolitan area in Indonesia, has complex property price dynamics, making it difficult for developers and buyers to determine house prices. This study aims to analyze and compare the performance of the Multiple Linear Regression and Random Forest Regression algorithms in predicting house prices in the region. The data was obtained through scraping techniques from the rumah123.com website in October 2024, covering 999 data points with variables such as price, location, building area, land area, number of bedrooms, bathrooms, and garages. A comparative approach with cross-validation was applied to evaluate the performance of both algorithms using the metrics MAE, MSE, RMSE, MAPE, and R². The research results show that Random Forest Regression using GridsearchCV has better predictive performance, with an MAE value of Rp.645,764,815, MAPE of 28.12%, and R² of 0.864. The main factors influencing house prices in Jabodetabek include building size, land size, number of bedrooms, bathrooms, garages, and location. This finding emphasizes the superiority of Random Forest Regression in capturing complex data patterns and the significant role of these variables in determining house prices.
Application of Neural Network to Predict Rupiah Exchange Rate Against Korean Won Saeful, Agung; Dwilestari, Gifthera; Rinaldi, Ade Rizki
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.734

Abstract

This study investigates the application of neural networks for predicting the exchange rate of the Indonesian Rupiah against the Korean Won, addressing the challenges posed by currency fluctuations in international trade and investment. The research employs a data mining approach utilizing historical exchange rate data, which allows the neural network to identify complex patterns that traditional forecasting methods may miss. The model is developed using RapidMiner software, facilitating data preprocessing, transformation, and evaluation. The outcomes show that the predictions were quite accurate, as indicated by a low prediction error rate. The findings suggest that the neural network model not only provides reliable forecasts but also maintains consistent performance over time. This research contributes to the growing field of artificial intelligence in finance, highlighting the potential of advanced predictive models to enhance decision-making processes in the context of global economic interactions. The study underscores the importance of integrating technology with economic analysis to better navigate the complexities of currency exchange and its implications for financial risk management.