Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Welding Technology

Analysis of Defects in SMAW Welding Joint Using E 7016 Electrode Due to the Direct Cooling Process Aljufri Aljufri; Indra Mawardi
Journal of Welding Technology Vol 4, No 2 (2022): December
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jowt.v4i2.3304

Abstract

Welding defects in a construction if repairs are not immediately carried out, then in the weld defect area can cause cracks that are aggravated by wider cracking and corrosion so that it can cause brittle fractures to the detriment. The problem with brittle fracture is a big problem in steel that has been welded, especially in welded joints, this brittle fracture becomes more important due to the factors of voltage concentration, inappropriate structure and defects in the weld, the purpose of this study: to find out how to use suitable electrodes for ST 37 material in the welding process, whose cooling process directly uses Oil and water (Direct Colling Process),  and to obtain optimal welding results after going through the results of welding defect examination using the Penetrant Test method, and the Maghnetic Particle Test.  From the results of the examination research conducted by the Welding Inspection team of PT. Superintending Company of Indonesia (SUCOFINDO) to 15 ST 37 specimens that have undergone welding does not show any welding defects, in the sense that they are still within the acceptable limit criteria (Acceptance Standard Ansi B 31.3), from the results of tensile testing On the use of different electrodes in the welding process of ST 37 material, shows that the ST 37 material whose welding process uses electrode E7016 welded results and tensile strength is better than the  ST 37 material which in the welding process uses electrodeS E 7018 with the cooling process using Oil and water
Influence of shielding gas flow on the TIG welding process using stainless steel 304 material Aljufri, Aljufri; Sofyan, Sofyan; Rizki, Muhammad Nuzan; Putra, Reza; Mawardi, Indra
Journal of Welding Technology Vol 6, No 1 (2024): June
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jowt.v6i1.5322

Abstract

A common issue encountered with main heat exchanger equipment is improper operation, which can lead to the development of cracks in the stainless-steel pipes. The welding process alters the metal microstructure in the heat-affected zone, thereby affecting the mechanical properties of the welded joint. To mitigate this issue, TIG welding with argon shielding gas is employed. This method helps prevent oxidation and ensures the formation of a stable welding arc in 304 stainless steel, which is renowned for its excellent mechanical properties and corrosion resistance. The objective of this study is to evaluate the impact of variations in shielding gas flow on the mechanical properties of 304 stainless steel plates during the TIG welding process. The aim is to determine the optimal settings for producing robust and long-lasting welded joints. To assess the hardness of the welded joints, we employed a Brinell-type Hardness Tester FB-3000LC machine. A Brinell steel ball indenter measuring 5 mm on the HBW scale and applying a load of 125 Kgf was utilized. At a protective gas flow rate of 8 L/min, the average tensile stress was 44.72 N/mm², strain was 0.177, modulus of elasticity was 2518 MPa, and hardness was 99.712 HBW. Increasing the gas flow rate to 13 L/min resulted in an average tensile stress of 47.50 N/mm², strain of 0.189, elastic modulus of 2525 MPa, and hardness of 105.522 HBW. Further increasing the gas flow rate to 18 L/min led to an average tensile stress of 49.69 N/mm², strain of 0.192, modulus of elasticity of 2597 MPa, and hardness of 106.704 HBW. Based on the research findings, it was observed that the weld area exhibited an increase in hardness values due to the heat generated during the welding process. The use of protective gas flow during welding is deemed effective in producing well-formed welded joints, as it prevents fractures from occurring within the weld area during the tensile test process. The choice of protective gas is determined by the dimensions of the material plate.