Claim Missing Document
Check
Articles

Found 13 Documents
Search
Journal : Building of Informatics, Technology and Science

Perbandingan Algoritma LSTM, Bi-LSTM, GRU, dan Bi-GRU untuk Prediksi Harga Saham Berbasis Deep Learning Tshamaroh, Muthia; Permana, Inggih; Salisah, Febi Nur; Muttakin, Fitriani; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7252

Abstract

Stock price prediction is an important component in making investment decisions. This study aims to compare the performance of four deep learning models, namely LSTM, Bi-LSTM, GRU, and Bi-GRU, in predicting stock prices, in order to find the most optimal model for the implementation of an accurate stock price prediction system. Five years of historical data undergoes normalization, windowing, and is separated into training data, validation data, and test data. Model training is conducted with different settings of batch size, timestep, and three kinds of optimizers (Adam, SGD, RMSprop). Performance assessment employs MSE, RMSE, MAE, and R² measurements. The findings indicate that the Bi-GRU model utilizing Adam optimizer settings, a batch size of 8, and a timestep of 21 yields the highest performance, achieving an MSE of 0.0003, an RMSE of 0.0169, an MAE of 0.0129, and an R² of 0.9438. This model demonstrates a strong capability to identify intricate patterns and long-term temporal relationships, outperforming other models in accuracy. The results advocate for the establishment of a predictive system that aids investors and firms in making strategic decisions based on data.
Analisis Sentimen Masyarakat Terhadap Kebijakan IKN Pada Periode Jokowi dan Prabowo Menggunakan Algoritma NBC, SVM, dan K-NN Nasution, Nur Shabrina; Permana, Inggih; Salisah, Febi Nur; Afdal, M; Megawati, Megawati
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7276

Abstract

The relocation of the National Capital City (IKN) from Jakarta to East Kalimantan has generated a variety of responses from the Indonesian people recorded through social media, especially platform X. This study aims to analyze and compare public sentiment towards the IKN policy in two periods of government, namely President Joko Widodo and President Prabowo Subianto. This study aims to analyze and compare public sentiment towards the policy of the National Capital City during two periods of government, namely President Joko Widodo and President Prabowo Subianto, using a machine learning approach. The three algorithms used in sentiment classification are Naive Bayes Classifier (NBC), Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The research process includes data crawling (600 data each per period), text preprocessing (cleaning, tokenizing, filtering, stemming), data labeling using Lexicon-Based approach with InSet dictionary, and weighting using TF-IDF method. The results of the analysis show that in the Jokowi period, public sentiment tends to be more balanced, with the dominance of negative sentiment (35.9%), followed by positive sentiment (33.4%) and neutral (30.7%). Whereas in the Prabowo period, negative sentiment increased to 40.3%, while positive decreased to 26.3%. Based on the model accuracy evaluation, in the Jokowi period, the NBC algorithm showed the best performance with an accuracy of 73%, while in the Prabowo period, the SVM algorithm excelled with the highest accuracy reaching 81%. These findings provide a dynamic picture of public perception of IKN policies under two different governments.
Penerapan Data Mining Untuk Analisis Sentimen Masyarakat Terhadap Ibu Kota Nusantara Pada Media Sosial X Rayean, Rival Valentino; Afdal, M; Permana, Inggih; Rozanda, Nesdi Evrilyan
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7318

Abstract

The policy of relocating the National Capital City to Nusantara (IKN) has become a viral and hotly debated issue in Indonesia, triggering diverse public reactions ranging from support to opposition. To understand the dynamics of this public sentiment, this research analyzed user responses from the social media platform X. A total of 1000 tweet data were collected, equally divided into 500 tweets before and 500 tweets after Indonesia's 2024 Independence Day ceremony. These tweet data were then manually labeled and classified for sentiment analysis using Naive Bayes and Random Forest data mining algorithms, with the SMOTE technique applied to address data class imbalance. The analysis results showed that before the Independence Day ceremony, sentiment towards the National Capital City to Nusantara (IKN) was dominated by 44% negative tweets (219 data points), followed by 30% positive (151 data points), and 26% neutral (130 data points). Post-ceremony, negative sentiment significantly increased to 50% (252 data points), while positive sentiment slightly rose to 33% (165 data points), and neutral sentiment decreased to 17% (83 data points). In model performance evaluation, the Random Forest algorithm demonstrated higher classification accuracy compared to Naive Bayes. Nevertheless, the accuracy difference between the two algorithms was relatively small, indicating that both were quite effective for sentiment analysis on this research dataset. This study successfully presents a comprehensive overview of the dynamics and polarity of public opinion on social media X regarding the ongoing policy of relocating the National Capital City to Nusantara.
Co-Authors Aditya Nugraha Yesa Agus Buono Ahsyar, Tengku Khairil Al Kiramy, Razanul Alfakhri, Rezky Andaranti, Arifah Fadhila Andi Darlianto Andriyani, Dwi Ratna Anggi Widya Atma Nugraha Anggia Anfina Anisah Fitri Anjani, Yulia Merry Annisa Ramadhani Aprijon Arif Marsal Arif Marsal Arif Marsal Arifin, Abdullah Aufa Zahrani Putri Aulia Dina Bib Paruhum Silalahi Chinthia, Maulidania Mediawati Dedi Pramana Dessi Cahyanti Detha Yurisna Detha Yurisna Dzul Asfi Warraihan Eka Pandu Cynthia Eki Saputra Eki Saputra Endah Purnamasari Esis Srikanti Fadhilah Syafria Fadil Rahmat Andini Farahdina Risky Ramadani Febi Nur Salisah Febi Nur Salisah Fiki Fikri, M. Hayatul Fitriah, Ma’idatul Fitriah, Ma’idatul Fitriani Muttakin Fitriani Muttakin Fitriani Muttakin Gathot Hanyokro Kusuma Gurning, Umairah Rizkya Hafiz Aryan Siregar Hasbi Sidiq Arfajsyah Hendri, Desvita Hilda Mutiara Nasution Husaini, Fahri Idria Maita Idria Idriani R, Nova Ikhsani, Yulia Imam Muttaqin Intan, Sofia Fulvi Ismail Marzuki Jazman , Muhammad Jazman, Muhammad Kusuma, Gathot Hanyokro M Afdal M Afdal M Zaky Ramadhan Z M. Afdal M. Afdal M. Afdal M. Afdal M. Afdal Maulana, Rizki Azli Megawati Megawati - Mona Fronita, Mona Muhammad Afdal Muhammad Fikry Muhammad Jazman Muhammad Jazman Muhammad Naufal, Muhammad Muhammad Zacky Raditya Mukmin Siregar Mundzir, Mediantiwi Rahmawita Munzir, Medyantiwi Rahmawita Mustakim Mustakim Mustakim Mustakim Mustakim Mustakim Mutia, Risma Muttakin, Fitriani Nabillah, Putri Nardialis Nardialis Nasution, Nur Shabrina Naufal Fikri, R. Adlian Negara, Benny Sukma Nesdi Evrilyan Rozanda Nesdi Evrilyan Rozanda Nisa', Sayyidatun Norhavina Norhavina Nunik Noviana Kurniawati Nurainun Nurainun Nuraisyah Nuraisyah Nurfadilla, Nadia Nurkholis Nurkholis nursalisah, febi Octavia, Sania Fitri Pratama, Arya Yendri Priady, Muhamad Ilham Pristiawati, Andani Putri Puput Iswandi Putra, Moh Azlan Shah Putra, Tandra Adiyatma Rahman, Eman Rahmawita M, Medyantiwi Rangga Arief Putra Rayean, Rival Valentino Restu Ramadhan Ria Agustina Rice Novita Rice Novita Rizka Fitri Yansi Rizki Pratama Putra Agri Rozanda, Nesdi Evrilyan Sabillah, Dian Ayu Salisah, Pebi Nur Sania Fitri Octavia Sanusi Shir Li Wang Siti Monalisa Sofia Fulvi Intan Susanti, Pingki Muliya Tasya Marzuqah Tengku Khairil Ahsyar Triningsih, Elsa Tshamaroh, Muthia Uci Indah Sari Ula, Walid Alma Vicky Salsadilla Wenda, Alex Wido Purnama Winda Wahyuti Windy Amelia Putri Wira Mulia, M. Roid Yusmar Yusmar Zarnelly Zarnelly Zarnelly Zarnelly Zarnelly Zarnelly Zarnelly