Articles
Penentuan Frekuensi Osilasi pada Dua Pendulum Terkopel Menggunakan Arduino Uno dengan Sensor Ultrasonik
Abdul Muis Habib;
Yudhiakto Pramudya
Jurnal Fisika Unand Vol 10 No 1 (2021)
Publisher : Universitas Andalas
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1535.187 KB)
|
DOI: 10.25077/jfu.10.1.15-21.2021
Penelitian ini bertujuan untuk menentukan nilai frekuensi osilasi pada dua pendulum terkopel menggunakan Arduino Uno dengan sensor ultrasonik. Gerak osilasi pendulum yang berbeda yaitu pada gerak sefase dan beda fase. Sensor ultrasonik dihubungkan pada board Arduino Uno yang kemudian dihubungkan pada PC menggunakan kabel USB. Proses pengambilan data dimulai dengan menggerakkan pendulum secara sefase dan menekan tombol conect pada aplikasi PLX-DAQ untuk memperoleh data yang secara otomatis akan ditampilkan pada microsoft excel. Selanjutnya, data yang diperoleh dilakukan analisis fitting data, kemudian hasilnya di-plot dalam bentuk grafik. Hasil menunjukkan perbedaan nilai frekuensi osilasi pada perbandingan pengukuran menggunakan tracker dan sensor ultrasonik. secara eksperimen menggunakan tracker, nilai ω sebesar 4,62 Hz dan secara teori nilai ω sebesar 5,66 Hz dengan ralat 18,4 %. Sedangkan pada sensor ultrasonik diperoleh nilai ω secara eksperimen sebesar 4,95 Hz dan secara teori sebesar 5,66 Hz dengan ralat 12,55%. Perbandingan pengukuran tersebut dapat dilihat bahwa nilai ω secara eksperimen menggunakan sensor ultrasonik lebih besar atau mendekati pada nilai ω secara teori. Artinya pengukuran frekuensi osilasi dengan menggunakan sensor ultrasonik juga memiliki tingkat akurasi yang baik sehingga layak digunakan dalam eksperimen osilasi terkopel. This study aims to determine the value of the oscillation frequency in two coupled pendulums using Arduino Uno with an ultrasonic sensor. The different pendulum oscillations are in phase and phase difference. The ultrasonic sensor is connected to the Arduino Uno board which is then connected to the PC using a USB cable. The data collection process begins by moving the pendulum in phases and pressing the connect button on the PLX-DAQ application to obtain data which will automatically be displayed on Microsoft Excel. Furthermore, the data obtained were analyzed using a fitting data analysis, then the results were plotted in graphical form. The results show the difference in the value of the oscillation frequency in the comparison of measurements using a tracker and ultrasonic sensor. experimentally using a tracker, the value of ω is 4.62 Hz and in theory, the value of ω is 5.66 Hz with an error of 18.4%. While the ultrasonic sensor obtained an experimental ω value of 4.95 Hz and theoretically 5.66 Hz with 12.55% error. Comparison of these measurements can be seen that the value of ω experimentally using an ultrasonic sensor is greater or closer to the value of ω in theory. This means that the measurement of oscillation frequency using an ultrasonic sensor also has a good level of accuracy so it is suitable to be used in coupled oscillation experiments.
Telaah Produk Monograf dari Hasil Simulasi dan Visualisasi Gelombang 2D dan 3D pada Membran Lingkaran dengan Software Scilab
Dwi Nova Siti Handayani;
Yudhiakto Pramudya;
Suparwoto Suparwoto
Jurnal Penelitian Pembelajaran Fisika Vol 11, No 1 (2020): April 2020
Publisher : Universitas PGRI Semarang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26877/jp2f.v11i1.4025
This study aims to produce the monograph of the simulation and visualization of 2D and 3D wave on the circular membrane with Scilab Software for Physics and Physics Education students. The research method used was experimental research which produced a reference book in the form of a research monograph. This monograph was validated by physics education lecturers, educators,and physics education students. Data collection techniques were carried out by collecting questionnaires in the form of expert validation sheets (material and media), educator / lecturer response sheets, and student response sheets. The data obtained from the validation test are in the form of a percentage of the validity of the monograph from the validation of two material experts and two media experts, the average score are 91% and 90%. The monograph test by three educators and the response test by 15 students the average score are 89% and 88%. The results of the validation test of the material expert, media expert, educators response, and the response of the students are the very good so that it can be concluded that the monograph product can be used as a learning media in the form of reference books in vibration and wave learning.
Numerical Study of Motion of a Cylinder Filled with Water on an Inclined Plane using Scilab
Marini Amalia Ocvianti;
Yudhiakto Pramudya;
Moh Irma Sukarelawan
Jurnal Fisika dan Aplikasinya Vol 17, No 3 (2021)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12962/j24604682.v17i3.8853
The velocity of the rolling motion is influenced by the shape of the object and its rotating axis. The cylinder motion on inclined plane has been investigated by number of research. However, the water filled cylinder need to be investigated further especially on the possibility moving sliding and rolling. Numerical study has been carried out on water filled cylinder modelling of frictionless sliding motion of point object, frictionless rolling motion, and rolling motion with friction on an inclined plane. By using the Euler method, data processing is carried out with the Scilab application. The resulting graph from running Scilab coding is a graph of v vs t and x vs t. We found the frictionless sliding motion produces the greatest velocity and distance because it is not influenced by friction and the object’s moment of inertia. Solid cylinder rolling with friction on an inclined plane produces the smallest velocity and distance due to the influence of friction and the moment of inertia of the object. These results indicate that a water filled cylinder can be considered a solid cylinder if ignoring all internal motion of water inside the cylinder.
The moon phases influence on the beginning of astronomical dawn determination in Yogyakarta
Abu Yazid Raisal;
Yudhiakto Pramudya;
Okimustava Okimustava;
Muchlas Muchlas
International Journal of Science and Applied Science: Conference Series Vol 2, No 1 (2018): International Journal of Science and Applied Science: Conference Series
Publisher : Universitas Sebelas Maret
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (445.373 KB)
|
DOI: 10.20961/ijsascs.v2i1.16664
In astronomy, there are three types of dawn. They are astronomical, nautical, and civil dawn. The sunlight is starting to appear on the east horizon when the Sun altitude is 18o below the horizon. Hence, there is a change on the sky brightness. The sky brightness can be affected by the moon phases. The sky brightness level is monitored by Sky Quality Meter (SQM). The SQM was installed upward to the zenith. There are 4 locations of measurement in Yogyakarta. The data has been collected for nine months to obtain the complete moon phases. The beginning of astronomical dawn is time when the sky brightness level is starting to decrease. The moving average algorithm was employed to determine the beginning of astronomical dawn. The time when the astronomical dawn begins is compared with the sun altitude calculation. The sun altitude calculation has been done using accurate times software. The difference of the beginning of astronomical dawn by measurement and calculation are 18.61±6.81 minutes, 19.12±3.28 minutes, 31.12±7.76 minutes, and 27.24±8.04 minutes, on the new moon (0), on the first quarter (0.25), on the full moon (0.5) and on the last quarter (0.75), respectively. The weather condition is also contributing to the results.
Strategi Wisata Observatorium UAD Saat Pandemi Covid-19
Arfiani Nur Khusna;
Yudhiakto Pramudya;
Ulinnuha Yudiansa Putra
Prosiding Seminar Nasional Program Pengabdian Masyarakat 2020: 11. Teknologi Informasi dalam Pemberdayaan Masyarakat
Publisher : Universitas Muhammadiyah Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (509.976 KB)
|
DOI: 10.18196/ppm.311.175
Observatorium UAD merupakan salah satu destinasi wisata edukasi yang berlokasi di Universitas Ahmad Dahlan (UAD) dan dikelola oleh Pusat Studi Astronomi (Pastron) UAD. Observatorium UAD merupakan tempat untuk melakukan pengamatan dan penelitian tentang tata surya oleh civitas akademika, sesuai dengan perkembangannya kemudian dibuka untuk umum menjadi wisata edukasi. Saat pemerintah menerapkan peraturan pembatasan mobilitas masyarakat sebagai antisipasi penyebaran Covid-19, Observatorium UAD terkena imbasnya dengan penutupan akses layanan kunjungan. Pengelolaan strategi wisata sepatutnya mendapat dukungan dari berbagai pihak karena wisata dapat mempengaruhi perekonomian masyarakat. Permintaan masyarakat yang cukup tinggi agar observatorium UAD tetap dapat hadir memberikan layanan dan wawasan tentang astronomi sehingga dibutuhkan langkah strategis di saat pandemi Covid-19, dengan berbagai kegiatan wisata virtual, yaitu live webinar melalui zoom atau google meet yang terekam di youtube melalui zoom atau google meet yang terekam di youtube dan mengoptimalkan media sosial yaitu instagram dan twitter. Tujuan kegiatan wisata virtual untuk tetap menghadirkan layanan observatorium di kalangan masyarakat dan mampu memberikan pengalaman kepada wisatawan. Peningkatan keikutsertaan masyarakat dalam wisata virtual sangat antusias, dilihat dari daftar peserta mencapai 300 orang dan peningkatan subcribe youtube dari 43 subcriber menjadi 133 subcriber, kepuasan peserta juga terukur dalam kuisioner dengan tingkat kepuasan mengikuti webinar sebesar 90%.
The application of Scilab software in frequency mode simulation on the circular membrane
Dwi Nova Siti Handayani;
Yudhiakto Pramudya;
Suparwoto Suparwoto;
Muchlas Muchlas
Journal of Physics: Theories and Applications Vol 2, No 2 (2018): Journal of Physics: Theories and Applications
Publisher : Universitas Sebelas Maret
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1238.79 KB)
|
DOI: 10.20961/jphystheor-appl.v2i2.31274
Scilab software is utilized for solving physics cases in two dimensional wave equations. This study aims to obtain a frequency mode simulation on the circular membrane so that it can display the wave pattern of each frequency mode. The method is to compare the simulation results with the normal mode circular membrane in each mode in to the theoretical calculation. The simulation has been done by utilizing the physics concept in a wave equation involving cos θ. The function of the wave equation is , assuming that r is the radius of the circle membrane. The value of the vibration frequency mode in theoretical are f01 = (200.6 ± 2.0) Hz, f11 = (319.7 ± 3.1) Hz, f21 = (428.5 ± 4.2) Hz. By using the Scilab program application, the results obtained show that the results frequency mode simulation f01, f11, dan f21 are similar to the normal mode in theoretical calculation. Thus, the simulation can be used to visualize waves of two dimensions in vibration and wave learning.
Analysis of Earthquake Activity in Indonesia by Clustering Method
Adi Jufriansah;
Yudhiakto Pramudya;
Azmi Khusnani;
Sabarudin Saputra
Journal of Physics: Theories and Applications Vol 5, No 2 (2021): Journal of Physics: Theories and Applications
Publisher : Universitas Sebelas Maret
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.20961/jphystheor-appl.v5i2.59133
Indonesia is an area where three large tectonic plates meet, namely the Indo-Australian, Eurasian and Pacific plates, so that Indonesia is included in the earthquake-prone category, with 11,660 earthquake vibrations identified in the Meteorology, Climatology and Geophysics Agency (BMKG) database in 2019 The purpose of this study is to develop a classification of the distribution of earthquakes in Indonesia in 2019 based on the values of magnitude, depth, and position. This research was conducted by using the clustering method based on the K-means algorithm and the DBSCAN algorithm as a comparison. The results of the clustering show that the earthquake data analysis using the K-Means algorithm is superior with a silhouette index value of 0.837, while the DBSCAN algorithm has a silhouette index value of 0.730.
PENENTUAN AWAL WAKTU SUBUH MENGGUNAKAN SKY QUALITY METER PADA VARIASI DEKLINASI MATAHARI
Mustofa Ahyar;
Yudhiakto Pramudya;
Abu Yazid Raisal;
Okimustava Okimustava
Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2018: Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2018
Publisher : Universitas Sebelas Maret
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (607.106 KB)
|
DOI: 10.20961/prosidingsnfa.v3i0.28542
Abstract: Determination of the beginning of the prayer time is very important for Muslims because it is one of the prayer pillars. However, the determination of beginning morning prayer is still difficult, because the sun is below the horizon. The determination of the beginning of dzuhur, ashr, and maghrib times are easier since the sun's shadow is still clearly visible. The sun position is determined by sun declination. The sun declination value is given a positive sign (+) when it is north of the sky equator and negative sign (-) when it is to the south of the celestial equator. This research method uses the experimental method. The determination of the subuh time has been done by measuring sky brightness level that was measured by SQM. There is a difference between the beginning of morning prayer time between the Accurate Times software calculation and the measurement. In the sun declination variation, difference data ranged from 21 - 36 minutes. From this study, it was concluded that the value of sun declination affected the beginning of dawn time.Abstrak: Penentuan awal waktu salat yang tepat penting bagi umat muslim, karena merupakan salah satu rukun salat. Namun, penentuan awal waktu salat subuh masih sulit, karena matahari berada di bawah horizon. Penentuan awal waktu zuhur, asar, dan magrib lebih mudah karena bayangan matahari masih terlihat jelas. Posisi matahari ditentukan oleh deklinasi matahari, nilai deklinasi matahari diberi tanda positif (+) ketika berada di sebelah utara ekuator langit dan negatif (-) ketika berada di sebelah selatan ekuator langit. Metode penelitian ini menggunakan metode eksperimen. Penentuan awal waktu subuh dengan menggunakan pengukuran Tingkat Kecerahan Langit (TKL) ini diukur dengan Sky Quality Meter (SQM). Terdapat selisih awal waktu salat subuh antara perhitungan Software Accurate Times dan pengukuran. Pada variasi deklinasi matahari diperoleh data selisih berkisar antara 21-36 menit. Dari penelitian ini disimpulkan bahwa nilai deklinasi matahari berpengaruh terhadap awal waktu subuh.
Pemanfaatan Metode Moving Average dalam Menentukan Awal Waktu Salat Subuh Menggunakan Sky Quality Meter (SQM)
Abu Yazid Raisal;
Yudhiakto Pramudya;
Okimustava ,;
Muchlas ,
Al-Marshad: Jurnal Astronomi Islam dan Ilmu-Ilmu Berkaitan Vol 5, No 1 (2019)
Publisher : University of Muhammadiyah Sumatera Utara
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (350.72 KB)
|
DOI: 10.30596/jam.v5i1.3121
The beginning of prayer time is important for Muslims because Islam advocates for prayer at the beginning of time. The beginning of Zuhr, Asar and Maghrib prayer times can be done by looking position of the Sun directly. However, the position of the sun cannot be directly observed to determine the beginning of the Fajr and Isha prayer times, because the Sun is below the horizon. The beginning of the Fajr prayer time can be determined by measuring sky brightness using the Sky Quality Meter (SQM). Many factors can affect SQM in collecting light so that the data is not separated from noise. The use of the moving average method reduces noise, making it easier to determine the beginning of the Fajr prayer time using SQM.
PENGEMBANGAN ALAT PERAGA BINTIK MATAHARI MENGGUNAKAN LED BERBASIS ARDUINO
Yoky Novra Silta;
Yudhiakto Pramudya
Spektra: Jurnal Fisika dan Aplikasinya Vol 2 No 3 (2017): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 2 Nomor 3, Desember 2017
Publisher : Program Studi Fisika Universitas Negeri Jakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (454.656 KB)
|
DOI: 10.21009/SPEKTRA.023.05
Abstrak Bintik matahari yang terjadi dalam kehidupan sehari-hari merupakan hal menarik untuk divisualisasikan melalui alat peraga dalam proses belajar menganjar. Alat peraga bintik matahari menggunakan software Arduino dilengkapi oleh lampu LED pada alat peraga tersebut. Perhitungan periode rotasi diketahai melalui jejak-jejak bintik matahari sehingga dapat divisualisasikan oleh alat peraga bintik matahari berdasarkan data tanggal jejak bintik matahari tersebut. Peneliti membatasi tanggal jejak bintik matahari selama 8 hari terhitung dari tanggal 6 Oktober 2016 sampai 13 Oktober 2016. Penggabungan jejak bintik matahari dari tanggal 6 Oktober 2016 sampai 12 Oktober 2016 (7 hari) dan tanggal 7 Oktober 2016 sampai 13 Oktober 2016 (7 hari) menghasilkan data I dan data II. Perhitungan hasil periode rotasi matahari pada data A dan data B adalah sama 28 hari sehingga divisualisasikan kedalam alat peraga bintik matahari. Alat peraga beroperasi dengan baik terlihat dari lampu LED pada alat peraga menyala/mati sesuai perintah program Arduino dengan tampilan serial monitor. Kata-kata kunci: Alat Peraga, Bintik Matahari, Arduino Abstract Sunspots in daily life is an interesting object to be visualized into an instrument applied in the teaching and learning process. The sunspots instrument applied Arduino software completed with LED light. The calculation of the periodic of rotation was discovered through the sunspots traces, so that it could be visualized by the sunspots instrument based on the sunspots traces. The researcher limited the date of the sunspots traces into 8 days ,started from October, 6th 2016 until October, 13th 2016. The merging of sunspots traces started from October 6th 2016 until October 12th 2016 ( 7 days) and at the date of October 7th 2016 until October 13th 2016 (7 days ) produced data I and data II. The calculation result of the sun periodic of rotation were equally 28 days, so that it could be visualized into the sunspots instrument. The instrument was successfully operated, indicated from the LED light which was turning on and off accordingly to the instructions of the Arduino program with the display of serial monitor.Keywords : Instrument, Sunspots, Arduino Keywords: Instrument, Sunspots, Arduino