Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : TEKNIK INFORMATIKA

Online Shop Product Sales Prediction Using Multilayer Perceptron Algorithm Erica Rian Safitri; Lili Tanti; Wanayumini Wanayumini
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.44286

Abstract

This study aims to develop a predictive model for forecasting product sales using the Multilayer Perceptron (MLP) algorithm. The model's performance was evaluated using key metrics, including the Mean Absolute Error (MAE), Mean Squared Error (MSE), and R² score. The model achieved an MAE of 0.861, an MSE of 9.521, and an impressive R² score of 0.999, demonstrating its ability to accurately predict product sales with minimal error. Feature correlation analysis identified key variables related to the target prediction, which is the number of products ready for shipment, underscoring the importance of feature selection in enhancing model performance. Prediction results revealed variability among product sales, with products like Foodpak Matte 245 (Code 49) predicted to sell approximately 244.31 units, while others like Stiker Kertas (Code 90) showed lower sales forecasts. The findings suggest that strategic interventions may be necessary to boost sales for underperforming items and capitalize on the demand for popular products. Future improvements, such as optimizing the network architecture, experimenting with activation functions and optimization algorithms, and incorporating external factors such as market trends, could further enhance the model’s accuracy and predictive power. Overall, the MLP model demonstrates strong potential for product sales forecasting, providing valuable insights for business decision-making.
Impact of Hyperparameter Tuning on CNN-Based Algorithm for MRI Brain Tumor Classification Muhammad Nasri Gea; Wanayumini Wanayumini; Rika Rosnelly
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.44147

Abstract

This study examines the impact of hyperparameter tuning on the performance of Convolutional Neural Networks (CNN) in classifying brain tumors using MRI images. The dataset, sourced from Kaggle, underwent preprocessing techniques such as normalization, augmentation, and resizing to enhance consistency and diversity. The study evaluates five hyperparameter configurations, analyzing their effects on classification accuracy, precision, recall, and F1-score. The optimal configuration (batch size: 16, epochs: 10, learning rate: 0.001) achieved an accuracy of 86%, precision of 81%, recall of 85%, and an F1-score of 0.83. Other configurations showed trade-offs, where larger batch sizes increased recall but reduced precision. These findings emphasize the importance of careful hyperparameter tuning to optimize medical imaging classification performance.
Sentiment Classification in Imbalanced Data: Trade-Offs Between Metrics and Real-World Relevance Indra Swanto Ritonga; Wanayumini; Dedy Hartama
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i2.46652

Abstract

Sentiment analysis plays a crucial role in assessing public perception, particularly in healthcare services like BPJS Kesehatan, Indonesia’s national health insurance program. However, sentiment classification faces a challenge due to class imbalance, where negative feedback dominates positive responses. This study investigates whether sentiment classification should prioritize traditional evaluation or maintain real-world data representation by preserving the original sentiment distribution. Two feature extraction methods, Term Frequency-Inverse Document Frequency (TF-IDF) and Bag of Words (BoW), were evaluated using Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression with varying maximum feature counts (100–300) to examine the impact of feature dimensionality. Model performance was evaluated using traditional metrics, while sentiment distribution fidelity was assessed by comparing predicted proportions with the dataset. Results show TF-IDF achieves higher precision and recall but fails to capture positive sentiments, leading to a skewed representation of real-world trends, while BoW offers a more balanced distribution with slightly lower accuracy. Paired t-tests and Wilcoxon signed-rank tests confirmed differences in accuracy and recall are significant, but not in precision and sentiment distribution. These findings highlight a trade-off between performance and sentiment diversity, vital in healthcare services and other fields with imbalanced datasets, emphasizing the need to align evaluation metrics with real-world objectives. Future research should investigate advanced models, such as deep learning and transformer-based approaches, to enhance both accuracy and fairness when analyzing imbalanced data.
Impact of Hyperparameter Tuning on CNN-Based Algorithm for MRI Brain Tumor Classification Gea, Muhammad Nasri; Wanayumini, Wanayumini; Rosnelly, Rika
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.44147

Abstract

This study examines the impact of hyperparameter tuning on the performance of Convolutional Neural Networks (CNN) in classifying brain tumors using MRI images. The dataset, sourced from Kaggle, underwent preprocessing techniques such as normalization, augmentation, and resizing to enhance consistency and diversity. The study evaluates five hyperparameter configurations, analyzing their effects on classification accuracy, precision, recall, and F1-score. The optimal configuration (batch size: 16, epochs: 10, learning rate: 0.001) achieved an accuracy of 86%, precision of 81%, recall of 85%, and an F1-score of 0.83. Other configurations showed trade-offs, where larger batch sizes increased recall but reduced precision. These findings emphasize the importance of careful hyperparameter tuning to optimize medical imaging classification performance.
Online Shop Product Sales Prediction Using Multilayer Perceptron Algorithm Safitri, Erica Rian; Tanti, Lili; Wanayumini, Wanayumini
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.44286

Abstract

This study aims to develop a predictive model for forecasting product sales using the Multilayer Perceptron (MLP) algorithm. The model's performance was evaluated using key metrics, including the Mean Absolute Error (MAE), Mean Squared Error (MSE), and R² score. The model achieved an MAE of 0.861, an MSE of 9.521, and an impressive R² score of 0.999, demonstrating its ability to accurately predict product sales with minimal error. Feature correlation analysis identified key variables related to the target prediction, which is the number of products ready for shipment, underscoring the importance of feature selection in enhancing model performance. Prediction results revealed variability among product sales, with products like Foodpak Matte 245 (Code 49) predicted to sell approximately 244.31 units, while others like Stiker Kertas (Code 90) showed lower sales forecasts. The findings suggest that strategic interventions may be necessary to boost sales for underperforming items and capitalize on the demand for popular products. Future improvements, such as optimizing the network architecture, experimenting with activation functions and optimization algorithms, and incorporating external factors such as market trends, could further enhance the model’s accuracy and predictive power. Overall, the MLP model demonstrates strong potential for product sales forecasting, providing valuable insights for business decision-making.
Co-Authors Ade Clinton Sitepu Ade Clinton Sitepu Adelina, Mimi Chintya Al Ayyub, Muhammad Azwar Alfitra, Andra Amanda, Windi Winona Ammar Yasir Nasution Andi Zulherry Annas Prasetio Annas Prasetio Ardana, Abdul Aziz Arjuna Ginting ayadi, B. Herawan H B. Herawan Hayadi Darma, Ali Dedy Hartama Desi Irfan Desi Irfan Devy Pratiwi Dini Farhatun Doughlas Pardede Elisabeth S, Noprita Erica Rian Safitri Erlina Erlina Fajar Hardiansyah Gea, Muhammad Nasri Habib Satria Hanani Hutabarat, Jamina Harahap, Sarwedi Hartama, Dedy Hartono Hartono Hasibuan, Cici Cahyati Husin Sariangsah Ichsan Firmansyah Indra Mawanta Indra Swanto Ritonga Irfan Sudahri Damanik Ismail, Juni isnaini, fitri JAKA KUSUMA Juni Ismail Karina Andriani Khoirunsyah Dalimunthe Lili Tanti Lili Tanti Lili Tanti, Lili Lubis, Cindy Paramitha lvindra, Farhan A M yoggi saputra M. Ari Iskandar Maharani, Puan Margolang, Khairul Fadhli Masri Wahyuni Mhd Fauzan Yafi Miftahul Jannah Muhammad Fachrurrozi Nasution Muhammad Nasri Gea Muhammad Sadikin Muhammad Sayid Amir Ali Lubis Muhammad Zarlis Mutiara S. Simanjuntak Novendra Adisaputra Sinaga NURLIANA NURLIANA P.P.P.A.N.W. Fikrul Ilmi R.H. Zer Prasetya, Hardi Putri, Nazifa Rahma, Intan Dwi Rika Rosnelly RIKA ROSNELLY Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly, Rika Roesnelly, Rika Rohima, Rohima Roslina Roslina, Roslina Roslina, Roslina Safitri, Erica Rian Sartika Mandasari Selase, Septinur Sihombing, Rotua Simangunsong, Dame Lasmaria Sri Ayu Rosiva Srg Sugeng Riyadi Sugeng Riyadi Sumantri, Ekoliyono Wahyu Syahrizal Syahrizal T S Gunawan Tambunan, Fazli Nugraha Tammamah Lubis, Hartati Teddy Surya Gunawan Teddy Surya Gunawan Teddy Surya Gunawan Teddy Surya Gunawan Teddy Surya Gunawan Triana Puspa handayani Triwanda, Eri Vicky Rolanda Wardana, Revo Wulandari, Wulandari Yuni Franciska Br Tarigan Zakarias Situmorang Zer, P.P.P.A.N.W. Fikrul Ilmi R.H.