Claim Missing Document
Check
Articles

PEMANFAATAN JARINGAN SARAF TIRUAN UNTUK PENYELESAIAN PERMASALAHAN OPTIMASI NONLINIER Victor Hariadi; Rully Soelaiman
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2011
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimasi dalam penyelesaiannya. Pendekatan optimasi sendiri menyediakan banyak alternatif metode yang dapat dipilihsesuai dengan karakteristik permasalahan yang akan diselesaikan. Penyelesaian permasalahan riil menggunakan pendekatan optimasi akan melibatkan model matematis. Model yang dibuat/digunakan akanmenentukan pada koridor teknik optimasi mana kita akan bekerja. Secara garis besar, permasalahan dalam teknik optimasi dapat berupa permasalahan (pemrograman) linier atau non linier. Sebenarnya kedua kelompok permasalahan ini masih memberikan ruang cukup luas bagi kegiatan riset yang bertujuan untuk merancang konsep atau metode penyelesaian yang lebih efisien. Namun pemrograman non linier menyisakan area yang lebih luas, mengingat model-model non linier seringkali memiliki bentuk yang lebih kompleks dan dinamis. Klas-klas pemrograman non linier dapat ditentukan dari bentuk Ddan karakteristik fungsi tujuan/obyekti serta dari keberadaan dan bentuk fungsi pembatasnya. Salah satu subklas dalam permasalahan pemrogramannonlinier adalah masalah pemrograman kuadratik dengan fungsi obyektif berbentuk fungsi konveks. Penelitian ini membahas penggunaan recurrent neural network untuk menyelesaikan permasalahan minimisasipemrograman kuadratik dengan batasan linier. Recurrent neural network digunakan karena mempunyai kelebihan pada strukturnya yang lebih sederhana dan kompleksitas yang lebih rendah untuk diimplementasikandaripada neural network yang digunakan sebelumnya untuk menyelesaikan permasalahan tersebut di atas. Ini menunjukkan bahwa recurrent neural network lebih stabil pada keadaan Lyapunov dan secara global mampumencapai konvergensi dalam waktu singkat.
OPTIMASI PENYUSUNAN PEGAS DENGAN METODE SISTEM PERBEDAAN BATASAN DAN ALGORITMA JALUR TERPENDEK Johan Varian Alfa; Rully Soelaiman; Chastine Fatichah
Jurnal Ilmiah Mikrotek Vol 1, No 2 (2014): FEBRUARI
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada permasalahan nyata, khususnya dunia fisika, penyusunan pegas dengan batasan-batasan tertentuyang optimal merupakan salah satu permasalahan optimasi yang muncul, dimana batasan yang diberikanadalah besaran-besaran yang membentuk gaya pegas. Pada penelitian ini, diusulkan sebuah desainalgoritma optimasi penyusunan pegas, yang dimulai dengan memodelkan permasalahan ke dalam graf,kemudian menggunakan metode sistem perbedaan batasan dan juga algoritma jalur terpendek untukmenghasilkan susunan pegas yang optimal. Sistem perbedaan batasan digunakan untuk memodelkanpermasalahan ke dalam bentuk pertidaksamaan. Kemudian dicari penyelesaiannya dengan menggunakankonsep graf yang disebut graf batasan. Penyelesaian akhir yang digunakan agar mendapatkan solusi yangoptimal adalah algoritma jalur terpendek. Algortima jalur terpendek yang digunakan adalah algoritmaPerbaikan Dijkstra. Hasilnya mampu menghasilkan susunan pegas yang optimal dan benar. Dan setelahdiuji coba, algoritma Perbaikan Dijkstra yang digunakan mampu lebih efisien dari segi performa waktueksekusi dibandingkan algoritma Bellman-Ford. Penghematan waktu yang didapat dengan menggunakanalgoritma Perbaikan Dijkstra rata-rata mencapai 83,55%.
METODE EKSTRAKSI FITUR PADA PENGKLASIFIKASIAN DATA MICROARRAY BERBASIS INFORMASI PASANGAN GEN Rully Soelaiman; Sheila Agustianty; Yudhi Purwananto; I.K. Eddy Purnama
Jurnal Ilmu Komputer dan Informasi Vol 2, No 1 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.758 KB) | DOI: 10.21609/jiki.v2i1.123

Abstract

Pengenalan teknologi DNA microarray membuat perolehan data microarray menjadi lebih mudah. Hal ini semakin memicu persoalan tentang bagaimana cara terbaik dalam mengekstraksi dan memilih fitur dari data yang berdimensi besar tersebut. Metode-metode terdahulu mengabaikan adanya hubungan antargen sehingga memungkinkan hilangnya informasi penting yang tersimpan dalam suatu gen pada saat ekstraksi fitur. Meskipun berbagai macam metode telah digunakan, pengembangan metode ekstraksi dan seleksi fitur dari data microarray yang lebih powerful dan efisien masih diperlukan untuk meningkatkan performa klasifikasi kanker. Dalam penelitian ini diimplementasikan sebuah metode dalam melakukan ekstraksi fitur dari data microarray yang memanfaatkan model klasifikasi berbasis informasi pasangan gen, yaitu pasangan gen yang memiliki perbedaan signifikan pada dua jenis sampel tissue. Hasil uji coba terhadap dua data microarray menunjukkan bahwa fitur hasil ekstraksi menggunakan metode ini dapat meningkatkan performa klasifikasi. Bahkan akurasi 100% dapat diperoleh pada uji coba terhadap data lymphoma.
Evaluasi Metode Histogram Ambang Tunggal dan Jamak Berbasis Nilai Median Dyah Sulistyo Rahayu; Arya Yudhi Wijaya; Rully Soelaiman
Jurnal Teknik ITS Vol 1, No 1 (2012)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (257.104 KB) | DOI: 10.12962/j23373539.v1i1.641

Abstract

Proses pengolahan citra merupakan tahapan penting dalam proses ekstraksi informasi dari sebuah citra. Salah satu tahapan awal dalam proses pengolahan citra adalah segmentasi dimana cara yang paling sederhana untuk melakukan segmentasi adalah dengan memilih ambang histogram, baik ambang tunggal maupun jamak. Metode ambang histogram baik ambang tunggal dan ambang jamak yang ada saat ini belum mampu memilih ambang dengan tepat ketika histogram yang terbentuk asimetris, heavy tailed, atau memiliki tingkat kemencengan yang tinggi. Metode Median-based Otsu dan Median-based Minimum Error Thresholding (MET) merupakan pengembangan dari metode Otsu dan MET yang diklaim dapat melakukan pemilihan ambang tunggal dan ambang jamak dari histogram citra dengan baik. Makalah ini bertujuan untuk melakukan pengamatan terhadap karakteristik dan kinerja kedua metode tersebut dalam melakukan pemilihan ambang. Kinerja metode diukur dengan menghitung nilai Missclassification Error (ME) atau tingkat kesalahan klasifikasi. Pada uji coba yang dilakukan terhadap data unimodal, diketahui bahwa karakteristik kedua metode tersebut berbeda. Metode Median-based Otsu memotong pada puncak histogram sedangkan Median-based MET memotong pada awal atau akhir histogram. Berdasarkan serangkaian uji coba terhadap data sintetis, diketahui bahwa metode Median-based MET memiliki kinerja yang lebih baik dibanding Median-based Otsu pada data dengan lembah yang jelas dengan selisih nilai kesalahan klasifikasi 22%.
Optimasi Kinerja Algoritma Klasterisasi K-Means untuk Kuantisasi Warna Citra Irwanto Irwanto; Yudhi Purwananto; Rully Soelaiman
Jurnal Teknik ITS Vol 1, No 1 (2012)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (727.891 KB) | DOI: 10.12962/j23373539.v1i1.631

Abstract

Kuantisasi warna citra merupakan operasi penting pada banyak aplikasi grafik dan pengolahan citra.  Metode kuantisasi warna banyak dilakukan dengan menggunakan algoritma klasterisasi data. Kepopuleran k-means sebagai algoritma klasterisasi data yang telah umum, ternyata belum mendapat cukup perhatian pada literatur kuantisasi warna. Hal ini disebabkan karena mahalnya biaya komputasi dan sensitivitasnya terhadap pengaruh pemilihan pusat klaster. Penelitian ini memberikan metode percepatan algoritma k-means untuk kuantisasi warna. Metode yang diajukan melibatkan beberapa modifikasi pada k-means konvensional, seperti pengurangan data, pembobotan data, dan penggunaan prinsip  pertidaksamaan segitiga untuk mempercepat pencarian ketetanggaan terdekat. Ujicoba dilakukan dengan beragam citra dan menunjukkan bahwa modifikasi yang telah dilakukan mampu memperlihatkan bahwa k-means juga sangat kompetitif sebagai algoritma  kuantisasi warna citra, baik dalam segi efektivitas maupun efisiensinya.
Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear Ardiana Rosita; Yudhi Purwananto; Rully Soelaiman
Jurnal Teknik ITS Vol 1, No 1 (2012)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (191.55 KB) | DOI: 10.12962/j23373539.v1i1.636

Abstract

Penyelesaian sistem persamaan nonlinear merupakan salah satu permasalahan yang sulit pada komputasi numerik dan berbagai aplikasi teknik. Beberapa metode telah dikembangkan untuk menyelesaikan sistem persamaan ini dan metode Newton merupakan metode yang paling sering digunakan. Namun metode ini memerlukan perkiraan solusi awal dan memilih perkiraan solusi awal yang baik untuk sebagian besar sistem persamaan nonlinear tidaklah mudah. Pada makalah ini, algoritma Particle Swarm yang diusulkan oleh Jaberipour dan kawan-kawan[1] diimplementasikan. Algoritma ini merupakan pengembangan dari algoritma Particle Swarm Optimization (PSO). Algoritma ini meyelesaikan sistem persamaan nonlinear yang sebelumnya telah diubah menjadi permasalahan optimasi. Uji coba dilakukan terhadap beberapa fungsi dan sistem persamaan nonlinear untuk menguji kinerja dan efisiensi algoritma. Berdasarkan hasil uji coba, beberapa fungsi dan sistem persamaan nonlinear telah konvergen pada iterasi ke 10 sampai 20 dan terdapat fungsi yang konvergen pada iterasi ke 200. Selain itu, solusi yang dihasilkan algoritma Particle Swarm mendekati solusi eksak.
Penerapan Secret Image Sharing Menggunakan Steganografi dengan Metode Dynamic Embedding dan Authentication-Chaining Arya Widyadhana; Muchammad Husni; Rully Soelaiman
Jurnal Teknik ITS Vol 1, No 1 (2012)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (429.793 KB) | DOI: 10.12962/j23373539.v1i1.647

Abstract

Teknik yang banyak digunakan untuk menyebarkan suatu citra rahasia kepada n orang adalah dengan cara membagi citra rahasia ke dalam beberapa bagian yang kemudian diproses menggunakan skema (k, n)-Shamir Secret Sharing yang dikemukakan oleh Adi Shamir (1979). Bagian-bagian dari citra rahasia yang sudah diproses tersebut disisipkan ke dalam n citra kamuflase dan menghasilkan n citra stego. Penyisipan dilakukan sedemikian rupa sehingga kualitas visual citra stego semirip mungkin dengan citra kamuflase. Cara untuk memproteksi citra stego dari orang yang tidak berhak adalah dengan cara menyisipkan suatu bit otentikasi yang berfungsi sebagai suatu digital signature dari citra stego. Citra rahasia dapat dirangkai kembali jika terdapat minimal k citra stego asli. Teknik ini dinamakan Secret Image Sharing.
Implementasi Sistem Klasifikasi Fuzzy Berbasis Optimasi Koloni Semut untuk Diagnosa Penyakit Diabetes Junian Triajianto; Yudhi Purwananto; Rully Soelaiman
Jurnal Teknik ITS Vol 2, No 1 (2013)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (151.669 KB) | DOI: 10.12962/j23373539.v2i1.2734

Abstract

Diabetes merupakan penyakit metabolis yang ditandai dengan tingginya tingkat glukosa dalam darah. Banyak pasien yang tidak menyadari adanya gejala diabetes dalam dirinya. Oleh karena itu diperlukan sistem pakar yang bisa memberikan peringatan apakah seseorang menderita diabetes atau tidak. Dalam makalah ini diimplementasikan sistem klasifikasi fuzzy berbasis optimasi koloni semut untuk diagnosa penyakit diabetes. Sistem pakar ini menggunakan mesin inferensi fuzzy untuk melakukan prediksi penyakit diabetes. Aturan-aturan fuzzy yang digunakan untuk membentuk mesin inferensi fuzzy didapatkan dengan menerapkan optimasi koloni semut yang bertugas mempelajari data latih. Uji coba sistem dilakukan dengan menggunakan data set Pima Indian Diabetes. Performa terbaik yang dihasilkan oleh model adalah akurasi sebesar 78,55%, precision sebesar 79,61%, recall sebesar 78,56%, dan F-measure sebesar 79,02%.
Implementasi Algoritma Rijndael dengan Menggunakan Kunci Enkripsi yang Berukuran Melebihi 256 bit Gracius Cagar Gunawan; Ahmad Saikhu; Rully Soelaiman
Jurnal Teknik ITS Vol 2, No 2 (2013)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373539.v2i2.3867

Abstract

Dalam dunia nyata, terdapat permasalahan keamanan informasi yang dapat diselesaikan dengan menggunakan enkripsi. Seiring dengan pertumbuhan teknologi, enkripsi dengan ukuran cipher key yang kecil semakin mudah dibongkar. Oleh karena itu, ukuran cipher key perlu ditingkatkan. Sampai saat ini, Advanced Encryption Standard yang dibentuk berdasarkan Algoritma Rijndael yang dapat menggunakan cipher key berukuran 256 bit masih dipakai. Dalam artikel ini, dilakukan studi dan implementasi algoritma enkripsi yang mampu menerima cipher key berukuran lebih dari 256 bit dengan bahasa C. Hasil uji coba menunjukkan program menghasilkan keluaran yang benar dan memiliki pertumbuhan waktu eksekusi secara linear, yaitu Q(Nb*Nk) dengan Nb adalah ukuran data masukan dan Nk adalah ukuran cipher key
Implementasi KD-Tree K-Means Clustering untuk Klasterisasi Dokumen Eric Budiman Gosno; Isye Arieshanti; Rully Soelaiman
Jurnal Teknik ITS Vol 2, No 2 (2013)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (322.524 KB) | DOI: 10.12962/j23373539.v2i2.3872

Abstract

Klasterisasi dokumen adalah suatu proses pengelompokan dokumen secara otomatis dan unsupervised. Klasterisasi dokumen merupakan permasalahan yang sering ditemui dalam berbagai bidang seperti text mining dan sistem temu kembali informasi. Metode klasterisasi dokumen yang memiliki akurasi dan efisiensi waktu yang tinggi sangat diperlukan untuk meningkatkan hasil pada mesin pencari web,  dan untuk proses filtering. Salah satu metode klasterisasi yang telah dikenal dan diaplikasikan dalam klasterisasi dokumen adalah K-Means Clustering. Tetapi K-Means Clustering sensitif terhadap pemilihan posisi awal dari titik tengah klaster sehingga pemilihan posisi awal dari titik tengah klaster yang buruk akan mengakibatkan K-Means Clustering terjebak dalam local optimum. KD-Tree K-Means Clustering merupakan perbaikan dari K-Means Clustering. KD-Tree K-Means Clustering menggunakan struktur data K-Dimensional Tree dan nilai kerapatan pada proses inisialisasi titik tengah klaster. Pada makalah ini diimplementasikan algoritma KD-Tree K-Means Clustering untuk permasalahan klasterisasi dokumen. Performa klasterisasi dokumen yang dihasilkan oleh metode KD-Tree K-Means Clustering pada data set 20 newsgroup memiliki nilai distorsi 3×105 lebih rendah dibandingkan dengan nilai rerata distorsi K-Means Clustering dan nilai NIG 0,09 lebih baik dibandingkan dengan nilai NIG K-Means Clustering.