Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Physics and Nuclear Applications

Distribution of Water Phantom BNCT Cyclotron based Using PHITS siti maimanah; siti maimanah; Susilo Susilo; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 4 No 1 (2019)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (948.911 KB) | DOI: 10.24246/ijpna.v4i1.1-7

Abstract

This research purpose is to estimate the dose distribution of BNCT in water phantom. Some common methods in the treatment of cancer such as brakhiterapi, surgery, chemotherapy, and radiotherapy still have the risk of damaging healthy tissue around cancer cells. BNCT is a selectively-designed technique by targeting high-loaded LET particles to tumors at the cellular level. BNCT proves to be a powerful method of killing cancer without damaging normal tissue. The source of the neutron used from the cyclotron dose in water phantom with the size of 30 cm x 30 cm x 30 cm was calculated using PHITS program. The result from the simulation is that boron water panthom has a dosimetri higher than phantom water without boron.
Neutron Chareacterization of BNCT Water Phantom Based on 30 MeV Cyclotron Using PHITS Computational Code Okti Dyah Rahayuningsih; Susilo Susilo; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 4 No 1 (2019)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1146.446 KB) | DOI: 10.24246/ijpna.v4i1.22-26

Abstract

Cancer is the second leading cause of death globally and was responsible for 8,8 million deaths in 2015. Approximately 70% of deaths from cancer occur in low- and middle-income countries. The war on cancer has been fought with three tools – surgery (cut), radiation therapy (burn) including radiotherapy and bracytherapy, and also chemotherapy (poison). Cancer therapy has increased life expectancy of patients but each treatment modality has its own effects, complications and toxicity. Moreover we have found a new effective method to fight cancer, that is, Boron Neutron Capture Therapy (BNCT). Boron Neutron Capture Therapy (BNCT) has for many decades been advocated as an innovative form of radiotherapy that, in principle, has the potential to be the ideal form of treatment for many types of cancers. This research’s aim is the characterising neutron of BNCT water phantom based on 30 MeV cyclotron using PHITS computational code. The result from the simulation is that thickness of the water phantom, related to flux neutron.