p-Index From 2020 - 2025
7.804
P-Index
Claim Missing Document
Check
Articles

Application of Box-Behnken Design for the Extraction of Padina australis Muhammad Nursid; Anissa Permatasari; Utami Dyah Syafitri; Irmanida Batubara
Molekul Vol 17 No 2 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.2.6359

Abstract

Optimization extraction of the brown algae Padina australis using the Box-Behnken design has been carried out. Box-Behnken design in relation to Response Surface Methodology analysis was conducted with four experimental factors (i.e., solvent concentration, temperature, extraction time, and sample to solvents ratio) towards the responses of yield antioxidant, anti-tyrosinase, anti-glycation, total phenolic content, and fucoxanthin content, completing with 29 running experiments. P. australis extraction's optimum condition was acquired at 79.99% solvent concentration, 18.48 hours extraction time, 44.50ºC temperature, and 1:9 ratio powders and solvents. The optimum condition provided a 7.30% extraction yield, 43.94% antioxidant activity, 86.83% anti-tyrosinase, 98.06% anti-glycation, 9.53 mg GAE/g total phenolic content, and 347.55 µg/g fucoxanthin content. Respond Surface Methodology analysis with the Box-Behnken design succeeded in making the appropriate model for producing the optimum P. australis extract.
Pengembangan produk sambal roa inovatif melalui formulasi undur-undur laut: The development of innovative sambal roa product through mole crab formulation Bambang Riyanto; Utami Dyah Syafitri; Wini Trilaksani; Immatul Ulya
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 26 No 2 (2023): Jurnal Pengolahan Hasil Perikanan Indonesia 26(2)
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17844/jphpi.v26i2.44396

Abstract

Sambal roa is one of the typical nusantara sauces with a distinctive taste and aroma of roa fish smoked using traditional methods. The decreasing production of roa fish demands innovation in its product development. Mole crab is a potential substitute ingredient because it has a crustacean/rebon taste similar to shrimp paste, as well as carotenoid content that can act as a natural dye. This innovation requires accurate formulation. This study aimed to develop an innovative sambal roa product through the formulation of chili, smoked roa fish, and mole crab using an I-optimal mixture amount design. The study included modification, production, and descriptive sensory testing of sambal roa, optimization of the sambal roa formulation with mole crab, and comparison between mole crab-sambal roa and commercial sambal roa. The sambal roa formula is based on a total mixture amount of 150 g with a proportion of chili of 40%-70%, smoked roa fish of 20%-30%, and mole crab of 35%-50%. Optimal acceptability was achieved with chili 40%, 21.68% smoked roa fish, and mole crab 38.32%. The characteristics of the innovative sambal roa with the formulation of chili, smoked roa fish, and mole crab are in the form of paste, have a viscosity of 9.547±948.54 cP, an orange-red color with L*:19.64±0.76, a*:17.58±0.80, and b*:22.75±0.68. The distinctive crustacean aroma (mole crab) can be sensed, and it has a spicy sensation with a capsaicin content of 701.78±0.028 ppm, protein content of 11.32±0.007%, fat content of 15.28±0.049%, water activity (Aw) of 0.84±0.0001, and total bacterial colonies of 6.3 ×10²±1.90 colonies/g.
Bicluster Analysis of Cheng and Church's Algorithm to Identify Patterns of People's Welfare in Indonesia Laradea Marifni; I Made Sumertajaya; Utami Dyah Syafitri
JUITA: Jurnal Informatika JUITA Vol. 11 No. 2, November 2023
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v11i2.17446

Abstract

Biclustering is a method of grouping numerical data where rows and columns are grouped simultaneously. The Cheng and Church (CC) algorithm is one of the bi-clustering algorithms that try to find the maximum bi-cluster with a high similarity value, called MSR (Mean Square Residue). The association of rows and columns is called a bi-cluster if the MSR is lower than a predetermined threshold value (delta). Detection of people's welfare in Indonesia using Bi-Clustering is essential to get an overview of the characteristics of people's interest in each province in Indonesia. Bi-Clustering using the CC algorithm requires a threshold value (delta) determined by finding the MSR value of the actual data. The threshold value (delta) must be smaller than the MSR of the actual data. This study's threshold values are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. After evaluating the optimum delta by considering the MSR value and the bi-cluster formed, the optimum delta is obtained as 0.1, with the number of bi-cluster included as 4.
Identifying Factors Influencing the Number of Diarrhea Cases in Children Under Five in West Java Using Negative Binomial Regression Akbar Rizki; Utami Dyah Syafitri; Christin Halim
Jurnal Matematika Sains dan Teknologi Vol. 25 No. 1 (2024)
Publisher : LPPM Universitas Terbuka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33830/jmst.v25i1.7582.2024

Abstract

The WHO states that diarrhea is the leading killer of children under five worldwide, and Indonesia is no exception, where 10.3% of under-five deaths are caused by diarrhea. West Java Province, with the largest population in Indonesia, has the highest diarrhea cases under five. The potential for diarrhea to become an extraordinary event, which is often accompanied by death, is very likely to occur because diarrhea is an endemic disease in West Java. Therefore, analyzing the factors influencing the children under five diarrhea cases in West Java is essential. Negative binomial regression was used in this study because the response was to count data on the incidence of diarrhea in children under five in West Java. The analysis results show that an increase in the percentage of public premises (PPP) meeting health requirements and population density per km2 will increase the number of diarrhea cases under five in West Java. However, an increase in the percentage of Community-Based Total Sanitation (CBTS), percentage of the population living in poverty, and percentage of households practicing Clean and Healthy Behavior (CHB) will decrease the number of diarrhea cases in West Java.
Strategi Pengembangan Yayasan Seri Amal Pasca Pandemi COVID-19 Studi Kasus: SMA Cahaya Medan & SMA St. Petrus Sidikalang Andreas Nicholas Gandaputra Simbolon; Idqan Fahmi; Utami Dyah Syafitri
Syntax Literate Jurnal Ilmiah Indonesia
Publisher : Syntax Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36418/syntax-literate.v9i8.15879

Abstract

Penelitian ini bertujuan untuk: (1) Menganalisis faktor lingkungan internal dan eksternal yang berpengaruh pada SMA Cahaya Medan dan SMA St. Petrus Sidikalang, (2) Merumuskan alternatif strategi pengembangan yang dapat dipakai oleh kedua sekolah, dan (3) Menentukan serta merekomendasikan strategi bisnis yang tepat bagi Yayasan Seri Amal dalam menghadapi persaingan. Metode yang digunakan adalah analisis faktor lingkungan internal (IFE) dan eksternal (EFE) serta Analytical Hierarchy Process (AHP). Hasil penelitian menunjukkan bahwa faktor dominan yang mempengaruhi SMA Cahaya Medan dari faktor internal adalah kurangnya SDM, sedangkan faktor eksternal adalah regenerasi sekolah dan potensi pangsa pasar lebih besar ke luar kota. Untuk SMA St. Petrus Sidikalang, faktor internal yang paling berpengaruh adalah akreditasi A dan penggunaan LMS, sementara faktor eksternal adalah minimnya kompetitor SMA swasta di daerah tersebut. Strategi pengembangan yang direkomendasikan untuk SMA Cahaya Medan meliputi pelatihan SDM, peningkatan kerjasama dengan berbagai pihak, dan penggabungan pembelajaran daring dengan luring. Untuk SMA St. Petrus Sidikalang, strategi meliputi meningkatkan kerjasama dengan instansi di bidang olahraga dan seni, pembangunan fasilitas pendukung, serta pengembangan desain pembelajaran yang unggul dan terukur. Prioritas strategi pengembangan untuk SMA Cahaya Medan adalah pelatihan SDM dan penggabungan pembelajaran daring dengan luring, sedangkan untuk SMA St. Petrus Sidikalang adalah kerjasama dengan instansi dalam pengembangan kurikulum serta prestasi akademik dan non-akademik. Penelitian ini memberikan rekomendasi strategis yang dapat meningkatkan daya saing dan kualitas pendidikan di kedua sekolah tersebut.
Evaluasi Perbandingan Kinerja Algoritma Cheng and Church Biclustering Terhadap Algoritma Clustering Klasik K-Means untuk Mengidentifikasi Pola Distribusi Barang Ekspor Indonesia Baehera, Seta; Utami Dyah Syafitri; Agus Mohamad Soleh
Jurnal Statistika dan Aplikasinya Vol 7 No 2 (2023): Jurnal Statistika dan Aplikasinya
Publisher : Program Studi Statistika FMIPA UNJ

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/JSA.07204

Abstract

Clustering is a process of grouping data into several groups (clusters) so that data in one cluster has a homogeneous level of similarity and data between clusters has heterogeneous similarity. A common example of a clustering algorithm is K-Means Clustering. Compared with classical clustering algorithms, the biclustering algorithm is a two-dimensional data grouping process. The biclustering algorithm functions to find data submatrices, namely row subgroups and column subgroups that have high correlation. One example of a biclustering algorithm is Cheng and Church Biclustering (CC Biclustering). The aim of this research is to evaluate the performance of the biclustering algorithm against classical clustering algorithms. Analysis applied to CC Biclustering and K-Means Clustering to identify distribution patterns of Indonesian export goods in the period 2013 to 2022. Based on research results, the optimal scenario for the K-Means algorithm is scenario 2, that is the application of the 7 cluster K-Means algorithm with pre- processing data scaling. Meanwhile, the optimal scenario for the CC Biclustering algorithm is scenario 1, that is the application of the CC Biclustering algorithm with a tolerance value of 0.10 with data scaling pre-processing. However, from these two scenarios, based on the MSR/Volume value, it was concluded that the best scenario is scenario 1 in the application of the CC Biclustering algorithm which has an MSR/Volume value of 0.077.
Eksplorasi Kesiapan Pegawai dalam Mengimplementasikan Core Values Ber-AKHLAK Pada Aparatur Sipil Negara Lidiasari, Melisa; Sukmawati, Anggraini; Syafitri, Utami Dyah
Jurnal Ilmiah Ecosystem Vol. 24 No. 1 (2024): Ecosystem Vol. 24 No 1, Januari - April Tahun 2024
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35965/eco.v24i1.4001

Abstract

Penelitian ini bertujuan untuk menganalisis kesiapan individu untuk berubah dalam mengimplementasikan core values BerAKHLAK berdasarkan variabel; organizational culture (OC), perceived organizational support (POS) dan work engagement (WE) di Kantor Syahbandar dan Otoritas Pelabuhan Kelas II Cilacap dan Kantor Distrik Navigasi Kelas III Cilacap. Metodologi yang digunakan yaitu kuantitatif dengan pengumpulan data melalui survei terhadap 152 responden yang dianalisis menggunakan Structural Equation Modeling (SEM) – Partial Least Square (SEM-PLS). Hasil analisis menunjukkan bahwa variabel POS dan WE berpengaruh positif dengan p-value (<0,05) pada kesiapan indvidu unruk berubah, sedangkan OC tidak berpengaruh positif dengan p-value (>0,05) pada kesiapan indvidu unruk berubah. Kesimpulannya, faktor POS dan WE perlu diprioritaskan sebagai variabel yang mempengaruhi kesiapan indvidu unruk berubah. This research aims to analyses the individual readiness to change (IRC) in implementing the core values of BerAKHLAK based on variables; organizational culture (OC), perceived organizational support (POS) and work engagement (WE) at the Cilacap Class II Harbour Master and Port Authority Office and the Cilacap Class III Navigation District Office. Quantitative methodology was used by collecting data through a survey of 152 respondents who were analysed using Structural Equation Modeling - Partial Least Square (SEM-PLS). The results of the analysis showed that the variables POS and WE had a positive effect with p-value (<0.05) on IRC, while OC had no positive effect on p-value (>0.05) on IRC. In conclusion, POS and WE factors need to be prioritized as variables that influence an IRC.
N-Level Structural Equation Models (nSEM): The Effect of Sample Size on the Parameter Estimation in Latent Random-Intercept Model Eminita, Viarti; Saefuddin, Asep; Sadik, Kusman; Syafitri, Utami Dyah
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 6, No 1 (2024)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v6i1.38914

Abstract

Multilevel Structural Equation Modeling (MSEM) is claimed to address hierarchical data structures and latent response variables, but it becomes unstable with an increasing number of levels. N-Level SEM (nSEM) is an SEM framework designed to handle a growing number of levels in the model. The nSEM framework uses the Maximum Likelihood Estimation (MLE) method for parameter estimation, which requires a large sample size and correct model specification. Therefore, it is essential to consider the necessary minimal sample size to ensure accurate and efficient parameter estimation in the nSEM model. This study examined how sample size affects the performance of parameter estimators in nSEM models. We propose a method to evaluate the effect of many environments to estimate the results of factor loadings and environmental variance produced by the model. In addition, we also assess the impact of environment size on the estimation results of factor loadings and individual variance. The results were then applied to actual data on student mathematics learning motivation in Depok. The findings show that neither the number of environments nor the size of the environment affects the performance of fixed parameter estimation in the nSEM model. nSEM indicates excellent performance in estimating environmental variance at level 2 when the number of environments increases. Conversely, increasing the size of the environment worsens the performance of estimating individual variance parameters. Overall, the nSEM framework for the latent random-intercept (LatenRI) model performs well with increasing sample sizes. The application data on LatenRI models show almost similar estimation results.Keywords: Hierarchical data; Latent random intercept model; Multilevel structural equation modeling; n-Level structural equation modeling.AbstrakMultilevel Structural Equation Modeling (MSEM) diklaim dapat mengatasi struktur data hierarki dan variabel respons laten, namun menjadi tidak stabil dengan bertambahnya jumlah level. N-Level SEM (nSEM) adalah kerangka kerja SEM yang dirancang untuk menangani semakin banyak level dalam model. Kerangka kerja nSEM menggunakan metode Maximum Likelihood Estimation (MLE) untuk estimasi parameter, yang memerlukan ukuran sampel yang besar dan spesifikasi model yang benar. Oleh karena itu, penting untuk mempertimbangkan ukuran sampel minimal yang diperlukan untuk memastikan estimasi parameter yang akurat dan efisien dalam model nSEM. Studi ini menguji bagaimana ukuran sampel mempengaruhi kinerja penduga parameter dalam model nSEM. Kami mengusulkan metode untuk mengevaluasi pengaruh banyak lingkungan dalam memperkirakan hasil factor loadings  dan varians lingkungan yang dihasilkan oleh model. Selain itu, kami juga menilai dampak ukuran lingkungan terhadap hasil estimasi factor loadings dan varians individu. Hasilnya kemudian diterapkan pada data aktual motivasi belajar matematika siswa di Depok. Hasil menunjukkan bahwa baik jumlah lingkungan maupun ukuran lingkungan tidak mempengaruhi kinerja estimasi parameter tetap pada model nSEM. nSEM menunjukkan kinerja yang sangat baik dalam memperkirakan varians lingkungan pada level 2 ketika jumlah lingkungan meningkat. Sebaliknya, peningkatan ukuran lingkungan akan memperburuk kinerja pendugaan parameter varians individu. Secara keseluruhan, kerangka nSEM untuk model intersepsi acak laten (LatenRI) bekerja dengan baik dengan meningkatnya ukuran sampel. Data penerapan model LatenRI menunjukkan hasil estimasi yang hampir serupa.Kata Kunci: Data hirarki; Model intersep acak laten; Model persamaan structural multilevel; Model persamaan structural n-level. 2020MSC: 62D99
Multilevel Regression Analysis on Graduate Student Grade Point Average Riswan, Riswan; Dyah Syafitri, Utami; Nur Aidi, Muhammad
Al-Khwarizmi : Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam Vol. 12 No. 1 (2024): Al-Khwarizmi : Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam
Publisher : Prodi Pendidikan Matematika FTIK IAIN Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24256/jpmipa.v12i1.3969

Abstract

Abstract:Multilevel regression is one of the methods used to analyze hierarchical data structures. One case of data with a hierarchical structure is the cumulative grade point average (GPA) data for students each semester (level one) which is nested within students (level two), and nested within faculties (level three). This study produced the three best three-level regression models: the multilevel regression model, the multilevel regression model with natural logarithmic transformation, and the multilevel binary logistic regression model. The multilevel regression model and the multilevel regression model with natural logarithmic transformation at a significant level of 5%, have the same variables that affect student GPA scores, including semesters, credits, gender, scholarships, and marital status with the same interaction effect, namely semester interactions with scholarships. In addition, the ICC values by the two models are also the same which explains that 91% of the total diversity of student GPA comes from the student level and 8% comes from the faculty level. For the multilevel binary logistic regression model, all explanatory variables affect GPA without involving interaction between levels. Abstrak:Regresi multilevel merupakan salah satu metode yang digunakan untuk menganalisis struktur data hirarkhi. Salah satu kasus data dengan struktur hirarki adalah data indeks prestasi kumulatif (IPK) mahasiswa tiap semester (level satu) yang tersarang dalam mahasiswa (level dua), tersarang dalam fakultas (level tiga). Dalam penelitian ini menghasilkan tiga model regresi tiga level terbaik yaitu model regresi multilevel, model regresi multilevel dengan transformasi logaritma natural, dan model regresi logistik biner multlevel. Model regresi multilevel dan model regresi multilevel dengan transformasi logaritma natural pada taraf nyata 5%, memiliki peubah sama yang berpengaruh terhadap nilai IPK mahasiswa antara lain semester, SKS, jenis kelamin, beasiswa, dan status nikah dengan pengaruh interaksi yang sama yaitu interaksi semester dengan beasiswa. Selain itu, nilai ICC oleh kedua model tersebut juga sama yang menjelaskan bahwa 91% total keragaman IPK mahasiswa berasal dari level mahasiswa dan 8% berasal dari level fakultas.  Untuk model regresi logistik biner multilevel semua peubah penjelas berpengaruh terhadap IPK tetapi tanpa melibatkan interaksi antar level.
Manifold Learning and Undersampling Approaches for Imbalanced Class Sentiment Classification Jumansyah, L. M. Risman Dwi; Soleh, Agus Mohamad; Syafitri, Utami Dyah
Knowledge Engineering and Data Science Vol 7, No 2 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i22024p139-151

Abstract

Movie reviews are crucial in determining a film's success by influencing audience decisions. Automating sentiment classification is essential for efficient public opinion analysis. However, it faces challenges such as high-dimensional data and imbalanced class distributions. This study addresses these issues by applying manifold learning techniques, Principal Component Analysis (PCA) and Laplacian Eigenmaps (LE) to reduce data complexity and undersampling strategies (Random Undersampling (RUS) and EasyEnsemble) to balance data and improve predictions for both sentiment classes. On reviews of The Raid 2: Berandal, EasyEnsemble achieved the highest average G-Mean of 0.694 using Term Frequency-Inverse Document Frequency (TF-IDF) features with a linear kernel without dimensionality reduction. RUS provided balanced but inconsistent results, while Review of Systems (ROS) combined with PCA (85% variance cumulative) improved predictions for negative reviews. Laplacian Eigenmaps were effective for negative reviews with 500 dimensions but less accurate for positive ones. This study highlights EasyEnsemble's superior performance in addressing the class imbalance, though optimization with manifold learning remains challenging.
Co-Authors Aam Alamudi Abdul Rohman Abdul Rohman Agus Mohamad Soleh Agustin Faradila Aidi, Muhammad Nur Aji Hamim Wigena Akbar Rizki Alfi Hudatul Karomah ALIU, MUFTIH ALWI Anang Kurnia Andreas Nicholas Gandaputra Simbolon Andrew Donda Munthe Anggrahini, Ervina Dwi Anggraini Sukmawati Anik Djuraidah Anissa Permatasari Antonio Kautsar ASEP SAEFUDDIN Auliya Ilmiawati Aziza, Vivin Nur Azkiya, Azka Al Baehera, Seta Bagus Sartono Bambang - Riyanto Bambang Prajogo Eko Wardoyo Bambang Riyanto Bartho Sihombing Bayu Pranata, Bayu Budi Susetyo Christin Halim Cici Suhaeni Dea Amelia, Dea Dwi Agustin Nuriani Sirodj Dwi Putri Kurniasari Eka Dewi Pertiwi Eka Winarni Sapitri Eminita, Viarti Endina Fatihah Yasmin Erfiani Erfiani Erfiani, Erfiani Erlinda Widya Widjanarko Ernawati, Fitrah Eti Rohaeti Evita Choiriyah Fadhila Hijryani FAHREZAL ZUBEDI Farit M Afendi Fatimah, Zahra Nurul Fitrianto, Anwar Gusti Tasya Meilania Hari Wijayanto I Made Sumertajaya Idqan Fahmi Immatul Ulya Indahwati Indonesian Journal of Statistics and Its Applications IJSA Intan Lukiswati Irmanida Batubara Irzaman, Irzaman Isti Rochayati Izzati, Mumpuni Nur Joko Santoso Jumansyah, L. M. Risman Dwi Khairil Anwar Notodiputro Kusman Sadik Laradea Marifni Lidiasari, Melisa Lismayani Usman M. Iqbal M. Rafi Meilania, Gusti Tasya Mohamad Rafi Mohamad Rafi Mohamad Rafi Mohammad Masjkur Muhamad Insanu Muhammad Bachri Amran Muhammad Nur Aidi Muhammad Nursid Mulianto Raharjo Muslim, Muhammad Irfai Muthahari, Wadudi Nanik Siti Aminah Nariswari Karina Dewi Ni Kadek Manik Dewantari Noer Endah Islami Nofrida Elly Zendrato Novia Yustika Tri Lestari. YR Nur Aidi, Muhammad Nurhajawarsi Nurhajawarsi Nursifa Mawadah R, Arifuddin Rifki Husnul Khuluk Ririn Fara Afriani Riswan Riswan Sanusi, Ratna Nur Mustika Sari, Mutia Dwi Permata Septaningsih, Dewi Anggraini Setyowati, Silfiana Lis Sifa Awalul Fikriah Siwi Haryu Pramesti Soleh, Agus M Soni Yadi Mulyadi Sony Hartono Wijaya Sri Sulastri Sri Wahyuningsih Syam, Ummul Auliyah Syifa Muflihah Tania Amalia Darsono Thasya Putri Topan . Ruspayandi Triyani Oktaria Vega, Iliana Patricia Vivin Nur Aziza Weisha, Ghea Wini - Trilaksani Wulan Tri Wahyuni Yenni Angraini Yuan Millafanti Yuni Suci Kurniawati Yuniar Istiqomah