Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : POSITIF

Klasifikasi Kekeringan dan Penyakit pada Daun Padi Berdasarkan Ekstraksi Ciri Warna dan Tekstur Menggunakan CSPDarknet: Klasifikasi Kekeringan dan Penyakit pada Daun Padi Berdasarkan Ekstraksi Ciri Warna dan Tekstur Menggunakan CSPDarknet Abdul Jabbar Robbani; Dwi Putro Wicaksono, Aditya; Dedy Agung Prabowo
POSITIF : Jurnal Sistem dan Teknologi Informasi Vol 11 No 1 (2025): Positif : Jurnal Sistem dan Teknologi Informasi
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/positif.v11i1.14964

Abstract

The decline in rice productivity in Indonesia is often caused by drought and leaf diseases that are difficult to detect early. This condition requires a technology-based classification system that is able to provide fast and accurate diagnosis as support for decision making in the agricultural sector. This study aims to develop a rice leaf image classification model using the CSPDarknet architecture, with a color and texture feature extraction approach. The dataset used is the result of primary documentation that has gone through an augmentation process to increase the diversity of training data. The model architecture consists of a CSPDarknet backbone combined with a Cross-stage Partial Bottleneck with two Convolutions (C2f) block, Spatial Pyramid Pooling - Fast (SPPF), Global Average Pooling, and dropout to improve model generalization. Training was carried out using the Stratified 5-Fold Cross-Validation method and three optimizer variations, namely Stochastic Gradient Descent (SGD), Adam, and AdamW. The experimental results showed that the best model combination was achieved with the AdamW optimizer, with an average accuracy value of 99.72%, precision of 99.73%, recall of 99.72%, and F1-score of 99.72%. These findings indicate that the proposed classification approach is able to effectively distinguish healthy, diseased, and drought-affected leaves. In the future, this model has the potential to be further developed through the integration of Raspberry Pi-based Internet of Things (IoT) devices for real-time monitoring of plant conditions in the field.
Co-Authors 12.5202.0161 Daniel Yeri Kristiyanto Abdul Jabbar Robbani Adanti Wido Paramadini Agustianto, Satya Helfi Agustomi, Endri Ajeng Dyah Kurniawati Akhdan Syarif Hidayatullah, Dias Akhmad, Fajar Kamaludin Alon Jala Tirta Segara An-Naayif, Hanief Taqiyuddien Adz-Dzaky Andri Sarpiadi Ardi Susanto Ardi Susanto Aritonang, Sudarsono Azzahra, Fathya Yuanita Briliana, Carlita Wahyu Cahyo Prihantoro Dandi Sunardi Dasril Aldo Dedy Abdullah Dedy Abdullah Dernata, Jaka Dimas Fanny Hebrasianto Permadi Dofiyer, Fernaldo Christofer Dwi Putro Wicaksono, Aditya Eki Agustiawan Faizah Faizah Fauzi Ahmad Muda Fauzian Setiawan, Kelvin Fernaldo Christofer Dofiyer Fiqrian, Muhammad Nafal Firdaus, Ammar Musthofa Gunawan Gunawan Hengki Putra Irawan Jaka Dernata Kirman Kirman, Kirman Kristanto, Joshua Putra Fesha M Yoka Fathoni marhalim, marhalim Marsally , Silvia Van Marsally, Silvia Van Muflih Haura Muhamad Azrino Gustalika Muhammad Husni Rifqo Muna, Bunga Laelatul Nicolaus Euclides Wahyu Nugroho Novian Adi Prasetyo Oktavia, Laksmi Dwi Pangestu, Farhan Aryo Paradise Perdi Leo Ade Candra Pratama, Rendra Agung Putra, Erwin Dwika Rachman, Ari Rakhma, Nazwa Aulia Ramdani, Cepi Rendra Agung Pratama Rendra Agung Pratama Resad Setyadi Rifqo, Muhammad Husni Rona Nisa Sofia Amriza Sa'adah, Aminatus Salsabila, Luciana Sandhy Fernandes Sandhy Fernandez Saputra , Wahyu Andi Sarah Astiti S.Kom., M.MT Silvia Van Marsally Sonita, Anisya Sudianto Sudianto, Sudianto Sulaeman, Gilang Sundari Sundari Syaputri, Yopita Syarif Hidayatullah, Dias Akhdan Tarigan, Emya Ninta Teguh Ramadhani, Dimas Toyib, Rozali Triaji Morgana Kaban Usman, Muhammad Lulu Latif Utami, Annisaa Wicaksono, Apri Pandu Wijiasih, Tsania Maulidia Yasin, Feri Yohani Setiya Rafika Nur Yuza Reswan