Claim Missing Document
Check
Articles

Found 23 Documents
Search

Pengembangan Backend Sistem Kearsipan Dokumen Menggunakan Framework Laravel di CV. Nakula Sadewa Hidayatullah, Arief; Yusuf, Dianni
Software Development, Digital Business Intelligence, and Computer Engineering Vol. 2 No. 02 (2024): SESSION (MARET)
Publisher : Politeknik Negeri Banyuwangi Jl. Raya Jember km. 13 Labanasem, Kabat, Banyuwangi, Jawa Timur (68461) Telp. (0333) 636780

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57203/session.v2i02.2024.61-68

Abstract

Arsip didefinisikan sebagai simpanan surat – surat penting. Surat tersebut harus disimpan dengan menggunakan sistem tertentu sehingga mudah dikelola dan digunakan Kembali di lain waktu. Penelitian ini mengidentifikasi dan menganalisis masalah yang muncul dalam pengelolaan kearsipan di dalam sebuah perusahaan teknologi, khususnya CV Nakula Sadewa. Permasalahan utama terkait dengan penggunaan metode konvensional dalam pengelolaan arsip, yang sering kali menyebabkan kebingungan dalam mengakses berkas yang tersimpan di dalam Google Drive. Untuk mengatasi masalah ini, penelitian ini mengusulkan sebuah sistem aplikasi berbasis web. Tahapannya meliputi analisis perencanaan, perancangan sistem dengan menggunakan diagram entitas hubungan, pengembangan menggunakan framework Laravel dan React.js, serta penyelesaian proyek dengan penyampaian kepada pihak CV Nakula Sadewa. Pengujian sistem dilakukan dengan metode unit test menggunakan alat bantu Postman, yang menunjukkan implementasi kode program berhasil dengan respons yang memuaskan. Dengan demikian, solusi ini diharapkan dapat meningkatkan efisiensi dalam pengelolaan kearsipan di perusahaan tersebut.
Analisis Kinerja Multimodal Dense Neural Network untuk Deteksi Hipoksia Janin pada Dataset Tidak Seimbang Yusuf, Dianni; Subono, Subono
ZETROEM Vol 7 No 2 (2025): ZETROEM
Publisher : Prodi Teknik Elektro Universitas PGRI Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36526/ztr.v7i2.6204

Abstract

This study aims to develop a Multimodal Dense Neural Network (MDNN) for detecting fetal hypoxia using an imbalanced Cardiotocography (CTG) dataset. The primary challenges in fetal hypoxia diagnosis include the imbalance between Normal, Suspect, and Hypoxia classes and the limited interpretability of conventional deep learning models. To address these issues, a robust preprocessing pipeline was designed, consisting of Physiological Clipping (50–200 bpm), Median Absolute Deviation (MAD) normalization, SMOTETomek balancing, and Gaussian noise augmentation. The MDNN architecture integrates two parallel branches: Fetal Heart Rate (FHR) signals and clinical parameters (pH, Apgar score, and base deficit), fused through a Dense Fusion Layer to generate compact multimodal representations. Experimental results demonstrate that the proposed MDNN achieved 99.7% accuracy, 99.5% F1-score, and 0.993 AUC, outperforming CNN (84.6%), ResNet18 (82.3%), and MLP (87.5%). The confusion matrix showed good generalization capability with per-class accuracies of 69% (Normal), 56% (Suspect), and 67% (Hypoxia). SHAP feature importance analysis identified FHR pattern (0.45) and pH level (0.25) as the most influential features in classification. These findings confirm that the proposed MDNN is robust, computationally efficient, and clinically interpretable, making it a promising framework for real-time fetal hypoxia diagnosis in modern clinical environments.
Analisis Efektivitas Metode Responsible, Accountable, Consulted, Informed (RACI) dalam Sistem Manajemen Process Approval subono, subono; Yusuf, Dianni
ZETROEM Vol 7 No 2 (2025): ZETROEM
Publisher : Prodi Teknik Elektro Universitas PGRI Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36526/ztr.v7i2.6450

Abstract

The approval management process plays an essential role in improving efficiency and accountability in organizational decision-making. PT Asta Berkah Autonomous, a company specializing in automation system development, faces challenges in transparency and efficiency due to manual approval procedures conducted through Google Forms and email. This study aims to design and implement a web-based approval management system integrated into the Asta Project application using the Responsible, Accountable, Consulted, Informed (RACI) method. The RACI method is applied to clearly define the roles and responsibilities of each stakeholder, ensuring a structured and transparent approval workflow. The system development process adopts the Rapid Application Development (RAD) approach, emphasizing iterative design and user involvement. System testing was conducted using Blackbox Testing and User Acceptance Testing (UAT) based on ISO 9126 quality standards. The results demonstrate that the implementation of the RACI method enhances role clarity, process efficiency, and transparency among participants. The developed system successfully reduces submission time, simplifies approval tracking, and supports faster and more accurate decision-making. This implementation significantly contributes to improving productivity and governance of the approval process within PT Asta Berkah Autonomous. System testing using Blackbox Testing and User Acceptance Testing (UAT) based on ISO 9126 quality standards. The results show that all system functions operated successfully (100% valid), with an average user satisfaction score of 84.44%, categorized as excellent. The application of the RACI method significantly improved efficiency, transparency, and accountability in the company’s approval process. Overall, the developed system contributes to digital transformation efforts and enhances corporate governance effectiveness.