Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Otopro

STUDI NUMERIK SEPARASI ALIRAN 3D AKIBAT PENAMBAHAN FFST PADA BIDANG TUMPU AIRFOIL ASIMETRI Nurjannah, Ika; Sasongko, Herman; Mirmanto, Heru
Otopro Vol 16, No 1 (2020)
Publisher : Jurusan Teknik Mesin Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/otopro.v16n1.p12-17

Abstract

3D flow separation is a form of flow loss that cannot be avoided on turbo engines. In the axial compressor, 3D flow separation is due to the interaction between the blade boundary layer and the casing boundary layer or the hub boundary layer. The result of the secondary flow causes blockage of the flow which causes the pressure on the compressor to decrease. Efforts to reduce secondary flow are carried out by adding a FFST to endwall. This research was conducted in a numerical simulation using FLUENT 6.3.26 software. The parameters used in the free stream flow Re = 1.64 x 105 and Turbulence Intensity Tu = 0.3% to assess the comparison of the flow characteristics on the endwall of the British 9C7 / 22.5C50 asymmetric airfoil due to the addition of a FFST and without FFST with variations angle of attack (α) of 00, 80, 120, 140, 160 .The results show that the addition of FFST can increase the turbulent intensity in the area near the wall which turns into momentum, so that it has an impact on the ability of the flow to overcome the adverse pressure in the trailing edge area and further backward (delayed) separation which results in smaller wake. With the addition of the angel of attack, the saddle point position is more directed to the lower side and the attachment line is not induced by the horseshoe vortex, so that the flow is more able to follow the contours of the body, as a result the curling flow is weaker and the wake is narrower and the blockage (energy loss) can be reduced. The most effective energy reduction due to secondary flow through FFST occurs at α = 8 ° at 7.36%.
RANCANG BANGUN RANGKA PEMBANGKIT LISTRIK PORTABLE DENGAN MENGGUNAKAN PEMBANGKIT LISTRIK TENAGA BAYU DAN PEMBANGKIT LISTRIK TENAGA SURYA Siswanto, Yudi; Amiruddin, Amiruddin; Nurjannah, Ika; Khair, Miftahul
Otopro Vol 20 No 1 Nov 2024
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/otopro.v20n1.p31-37

Abstract

Electrical energy sources have developed rapidly today in order to minimize the use of fuel oil which is currently decreasing in number and the distribution of electricity from PLN to the community which is not evenly distributed. The use of renewable and environmentally friendly energy will provide a solution when compared to the use fuels fossil  such as coal which will soon run out, it is also known that Indonesia is a coastal country with abundant wind speed and sunlight potential. Therefore, this study aims to create a power generator by utilizing the potential of solar power plant (PLTS) and wind power plant (PLTB) energy sources by adding a portable system is designed using solidworks. In the process of making this tool, planning is carried out to make a design, design determines the tools and materials used, the work process, cutting hollow iron according to the specified size, welding, and installation of windmills. The size of this power plant is 1330mm long, 600mm wide and 700mm high. The results of the portable power plant test using a 15W capacity lamp obtained the highest results at 11.05VDC PLTS and the highest voltage at 2.45VDC PLTB. In addition, this study also carried out a safety factor simulation on the power plant frame from the simulation results obtained as follows in part one stress value (vonmises) 9.873e-08N/m2, displacement 3.930e-04 mm, strain 4.637e+04 N/m2, and safety factor 1.741, In the frame section two stress (vonmises) 5.554e-04N/m2, displacement 3.098e-00mm, strain 9.488e-08N/m2, and safety factor 3.6.
DESIGN OF INTERNET OF THINGS (IOT) BASED BEARING MONITORING TOOL Siswanto, Yudi; Opu, Agus Salim; Nurjannah, Ika; Pakiding, Henly
Otopro Vol 21 No 1 Nov 2025
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/otopro.v21n1.p13-21

Abstract

Bearing failure is one of the main causes of operational disruptions in mechanical systems due to the lack of continuous condition monitoring. Early detection of vibration and temperature increases is essential to prevent downtime and reduce maintenance costs. This study aims to design and develop a bearing condition monitoring prototype based on the Internet of Things (IoT) using the Research and Development (R&D) approach. The system employs an Arduino Uno and NodeMCU ESP8266 as the main controllers, a piezoelectric sensor to detect vibration, and an MLX90614 infrared sensor to measure the bearing surface temperature. The measured data are transmitted in real time to the ThingSpeak platform for remote visualization and analysis. Experimental testing over three hours showed an average vibration of 7.25 Hz and an average temperature of 35.87 °C, where the condition indicators on the LED and LCD operated according to the predefined thresholds. The system successfully provided early warnings of potential bearing failure through continuous parameter monitoring. The novelty of this research lies in the integration of low-cost multi-sensor technology with the ThingSpeak platform for real-time, end-to-end bearing condition monitoring, supporting the concept of predictive maintenance.