Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Artificial Intelligence in Medical Issues

Performance Metrics of AdaBoost and Random Forest in Multi-Class Eye Disease Identification: An Imbalanced Dataset Approach Tarigan, Thomas Edyson; Susanti, Erma; Siami, M. Ikbal; Arfiani, Ika; Jiwa Permana, Agus Aan; Sunia Raharja, I Made
International Journal of Artificial Intelligence in Medical Issues Vol. 1 No. 2 (2023): International Journal of Artificial Intelligence in Medical Issues
Publisher : Yocto Brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijaimi.v1i2.98

Abstract

This study presents a comprehensive evaluation of AdaBoost and Random Forest Classifier algorithms in the classification of eye diseases, focusing on a challenging scenario involving an imbalanced dataset. Eye diseases, particularly Cataract, Diabetic Retinopathy, Glaucoma, and Normal eye conditions, pose significant diagnostic challenges, and the advent of machine learning offers promising avenues for enhancing diagnostic accuracy. Our research utilizes a dataset preprocessed with Canny edge detection for image segmentation and Hu Moments for feature extraction, providing a robust foundation for the comparative analysis. The performance of the algorithms is assessed using a 5-fold cross-validation approach, with accuracy, precision, recall, and F1-score as the key metrics. The results indicate that the Random Forest Classifier outperforms AdaBoost across these metrics, albeit with moderate overall performance. This finding underscores the potential and limitations of using advanced machine learning techniques for medical image analysis, particularly in the context of imbalanced datasets. The study contributes to the field by providing insights into the effectiveness of different machine learning algorithms in handling the complexities of medical image classification. For future research, it recommends exploring a diverse range of image processing techniques, delving into other sophisticated machine learning models, and extending the study to encompass a wider array of eye diseases. These findings have practical implications in guiding the selection of machine learning tools for medical diagnostics and highlight the need for continuous improvement in automated systems for enhanced patient care.
Co-Authors -, Suraya ., Kumalasanti Afifah Dzuriatun Khasanah Agus Aan Jiwa Permana Agusalim Syamsudin Pure Almuntaha, Eska Amir Hamzah Amir Hamzah Ardhin Primadewi Ariyana, Renna Yanwastika Armizi, Armizi Arum, Rosalia Brilly Lutfan Qasthari Dahlia, Reski Dina Liana Dini Pujiatin Dino Rahman Sya'bani Edhy Sutanta (Jurusan Teknik Informatika IST AKPRIND Yogyakarta) Eko Nur Cahyo Eko Nur Cahyo Endang Efendi Erfanti Fatkhiyah Erna Kumalasari Erna Kumalasari Nurnawati Erna Kumalasari Nurnawati Fadhila Tangguh Admojo Fitrianingsih, Ari Gustian Rohendi Hae Isnapoh Maykel Yoseph Hanafi Eko Kurniawan Hen i Putriningtyas Huzain Azis Ika Arfiani Ikramullah, Ahmad Saleh Kafrawi Kafrawi Khabib Mustofa Khasanah, Rahayu Kumalasanti . Kurniawan, Hanafi Eko Luay Nabila El Suffa Lucio Almeida Da Costa Maimunah, Maimunah Muhammad Ardi Setiawan Muhammad Rizqy Ath-Thaariq Muhammad Rizqy Ath-Thaariq Muhammad Sholeh MUHAMMAD SHOLEH Muhammadiyah, Muhammadiyah Muntaha Nega Napratilora, Martina Nurmala Eka Safitri Nuryati, Istin Oktavia, Yunika Putri Pradnyana, I Wayan Julianta Prita Haryani Pujiatin, Dini Purnomo, Tuessi Ari Rafi, Naufal Fajar Renna Yanwastika Ariyana5 Ria Mega Lestari Riki Apriadi Riki Apriadi Ririn Septrisulviani Rosalia Arum Rosalia Arum Kumalasanti Rr. Yuliana Rachmawati Rr. Yuliana Rachmawati RR. Yuliana Rachmawati Sambuari , Meychel Danius Fedrix Sani, Faozan Asrul Saniyah, Saniyah Satrio Muslim Wibowo Septian Efendi Septrisulviani, Ririn Setiawan, Akhmad Fajar Setiya Nugroho Sholeh, Muhammad Siami, M. Ikbal Siti Saudah Sunia Raharja, I Made Suraya - Suwanto Raharjo Tarigan, Thomas Edyson Taufiqur Rohman Ticker Th, Elfrid Uning Lestari Wibowo, Satrio Muslim Windyaning Ustyannie Wulansari, Nidia