Claim Missing Document
Check
Articles

Found 29 Documents
Search

Design and Implementation of an IoT-Based Electric Motor Vibration and Temperature Disruption Handling System Aryo De Wibowo Muhammad Sidik; Ilman Himawan Kusumah; Anang Suryana; Edwinanto; Marina Artiyasa; Anggy Pradiftha Junfithrana
FIDELITY : Jurnal Teknik Elektro Vol 2 No 2 (2020): Edisi Mei 2020
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v2i2.108

Abstract

Faults in three-phase electric motors often occur in power plants. Unfortunately, the disturbances are unpredictable and reduce unit performance. This paper presents an Internet of Things (IoT) based intrusion handling system for secure and economic data communication in industrial fields. The build system can monitor and control with FLM (First Line Maintenance). FLM is a minor corrective maintenance activity carried out while the unit is operating with the provision of simple equipment. Device design and testing using the ESP8266 microcontroller module to obtain motor vibration, current, and temperature information for motor conditions supported by the application as a user interface. The result prevents further damage to the electric motor by adding an external fan and a grease pump that serves for additional engine cooling. This research contributes to improving the performance of the generator at PT. Indonesia Power UJP West Java II Palabuhanratu is one of the steam power plants in West Java, Indonesia
Gambaran Umum Metode Klasifikasi Data Mining Aryo De Wibowo Muhammad Sidik; Ilman Himawan Kusumah; Anang Suryana; Edwinanto; Marina Artiyasa; Anggy Pradiftha Junfithrana
FIDELITY : Jurnal Teknik Elektro Vol 2 No 2 (2020): Edisi Mei 2020
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v2i2.111

Abstract

Berbagai metode klasifikasi data mining diperiksa dalam penelitian ini untuk aplikasi database baru. Untuk menemukan suatu model, klasifikasi membagi data ke dalam kelompok-kelompok berdasarkan batasan yang telah ditentukan. Metode klasifikasi penting lainnya adalah algoritma Genetika C4.5, Naive Bayes, dan SVM. Akhirnya, kami membahas penjelasan algoritma
Automatic Gas Control System In The Motorcycle Braking Process With The Concept Of Non-Uniform Slowing Down Motion Anang Suryana; Anggy Pradiftha Junfithrana; Ilman Himawan Kusumah; Aryo De Wibowo; Edwinanto; Marina Artiyasa; Yufriana Imamulhak; Yudha Putra
FIDELITY : Jurnal Teknik Elektro Vol 2 No 3 (2020): Edisi September 2020
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v2i3.115

Abstract

When motorcyclists have an accident, they are at high risk of suffering severe or fatal injuries. The difficulty experienced by motorcyclists and considered one of the most complicated to do in an emergency is braking because motorcycle accidents are often caused by loss of control or stability when braking as evasive action. In the braking process, a motorcycle must pay attention to distance and speed so that the deceleration during braking is by the kinematic concept to avoid the shock force during braking, in this study uses research and development methods in making automatic braking systems on motorbikes. The actuator system controls the brake pedal, and the gas pedal uses a stepper motor. The two stepper motors will move automatically if the motorbike detects an object in front of it at less than 4 meters. The angle of the stepper motor that drives the brake lever is in a span between 0 degrees to 30 degrees, while the tip of motion of the stepper motor that moves the gas pedal is in a span of 0 degrees to 70 degrees. The angle movement of the stepper motor is influenced by the distance detected by the HC-SR04 type proximity sensor and the motorbike speed detected by the KY-003 type speed sensor, which works by utilizing the hall effect principle. The results of the tests that have been carried out show that the automatic braking system created can work well with an indicator that there is no shock force during the automatic braking process
Menerapkan K-Means Clustering untuk Segmentasi Gambar Database Berwarna Aryo De Wibowo Muhammad Sidik; Ilman Himawan Kusumah; Anang Suryana; Edwinanto; Marina Artiyasa; Anggy Pradiftha Junfithrana; Yufriana Imamulhak; Yudha Putra
Fidelity : Jurnal Teknik Elektro Vol 2 No 3 (2020): Edisi September 2020
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v2i3.116

Abstract

Image segmentation is very important in the approach of image analysis to learn about any image. The K-means clustering technique is an algorithm widely used in image segmentation systems. This work utilizes the Lab* color space and K-means clustering to offer color-based image segmentation. This research demonstrates image segmentation of a database based on color characteristics using unsupervised K-means clustering technique implemented with MATLAB coding. The entire work is divided into two phases. Firstly, color separation augmentation from the color image database is enhanced through de-correlation stretching. Then, the six areas of the image database are clustered into three groups using the K-means clustering technique. By using the Lab* color space and K-means clustering method in the color image database, we can only show the central area of any image. We can isolate contaminated areas in medical color image databases with this approach and treat diseases quickly. We can use various approaches such as Particle swarm Optimization (PSO) for better results.
Jaringan Syaraf Tiruan Perambatan Balik untuk Klasifikasi Covid-19 Berbasis Tekstur Menggunakan Orde Pertama Berdasarkan Citra Chest X-Ray Muchtar Ali Setyo Yudono; Eki Ahmad Zaki Hamidi; Jumadi Jumadi; Abdul Haris Kuspranoto; Aryo De Wibowo Muhammad Sidik
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 4: Agustus 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022945663

Abstract

COVID-2019 pertama kali muncul di kota Wuhan, Cina pada Desember 2019, kemudian menyebar dengan cepat ke seluruh dunia dan menjadi pandemi. Pandemi COVID-19 telah menyebabkan dampak yang cukup fataluntukkesehatan masyaraka. Merupakan hal yang sangat penting untuk mendeteksi kasus positif sedini mungkin untuk pencegahan penyebaran lebih lanjut dari virus ini. Teknik tes paling umum yang saat ini digunakan untuk mendiagnosa COVID-19adalah reverse-transcriptase polymerase chain reaction (RT-PCR). Pencitraan radiologis dada seperti chest X-ray memiliki peran penting dalam diagnosis dinipenyakit ini. Karena sensitivitas RT-PCR rendah 60% -70%, bahkan jika hasil negatif diperoleh, gejala dapat dideteksi dengan pemeriksaan gambar radiologi pasien. Teknik kecerdasan buatanyang digabungkan dengan pencitraan radiologis dapat membantu untuk mendiagnosis COVID-19 dengan lebih cepat dan akurat.Proses klasifikasi pada penelitian ini terdapat beberapa tahapan yaitu pra-pengolahan, segmentasi, ekstraksi ciri, dan klasifikasi. Ekstraksi ciri yang digunakan adalah berdasarkan tekstur orde pertama dan klasifikasi yang digunakan adalah jaringan syaraf tiruan perambatan balik. Sistem klasifikasi pada penelitian ini menghasilkan rata-rata akurasi klasifikasi sebesar 94,17% untuk kelas normal dan 77,5% untuk COVID-19. Hasil akurasi tertinggi didapat pada skenario pertama dengan hasil akurasi sebesar 88,8%. Nilai rata-rata sensitivitas yang didapat pada penelitian ini sebesar 94,17% untuk kelas normal dan 76,67% untuk kelas COVID-19. Nilai rata-rata spesifisitas yang didapat pada penelitian ini sebesar 76,67% untuk kelas normal dan 94,17% untuk kelas COVID-19.AbstractCovid-2019 first appeared in Wuhan, China, in December 2019, then quickly spread throughout the world and became a pandemic. The Covid-19 pandemic has had a fatal impact on public health. It is crucial to detect positive cases as early as possible to prevent the further spread of this virus. The most common test technique currently used to diagnose Covid -19 is the reverse-transcriptase polymerase chain reaction (RT-PCR). Chest radiological imaging such as chest X-ray has a vital role in the early diagnosis of this disease. Due to the low RT-PCR sensitivity of 60%-70%, symptoms can be detected by examining the patient's radiological images even if a negative result is obtained. Artificial intelligence techniques combined with radiological imaging can help diagnose Covid -19 more quickly and accurately. The classification process in this study consists of several stages, namely pre-processing, segmentation, feature extraction, and classification. The feature extraction used is based on the first-order texture, and the classification used is a backpropagation neural network. The classification system in this study resulted in an average classification accuracy of 94.17% for the normal class and 77.5% for Covid -19. The highest accuracy results were obtained in the first scenario, with an accuracy of 88.8%. The average sensitivity value obtained in this study was 94.17% for the normal class and 76.67% for the Covid -19 class. The average specificity value obtained in this study was 76.67% for the normal class and 94.17% for the Covid -19 class.
EEG-Based Classification of Schizophrenia and Bipolar Disorder with the Fuzzy Method Aryo Sidik; Harurikson Lumbantobing; Anang Suryana; Muchtar Ali Setyo Yudono; Edwinanto; Yudha Putra; Yufriana Imamulhak; Bayu Indrawan
INTERNATIONAL JOURNAL ENGINEERING AND APPLIED TECHNOLOGY (IJEAT) Vol. 5 No. 2 (2022): November 2022
Publisher : Nusa Putra University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/ijeat.v5i2.68

Abstract

This study demonstrates various fuzzy-based strategies for classifying and diagnosing people with mental illnesses such as schizophrenia and bipolar disorder. The signals collected from 32 unipolar electrodes during non-invasive electroencephalogram analysis were examined to determine their key characteristics. This research uses a sophisticated fuzzy-based radial basis function neural network. Entropy analysis and analysis of variance of other statistical parameters are also used. Three hundred and twelve schizophrenic patients and 105 individuals with bipolar disorder were examined. In contrast to healthy controls, the data indicated that the patients were correctly classified. With close to 96% accuracy, the suggested method outperforms existing machine learning methods, such as support vector machines and k-nearest neighbors. Conclusion: This categorization method will enable the development of highly accurate algorithms to identify and classify various mental illnesses.
Sistem Monitoring dan Kontrol Katup Pendingin terhadap Temperatur Air Outfall PLTU Marina Artiyasa; Anang Suryana; Muhammad Shobirin; Anggy pradiftha junfithrana; Aryo de Wibowo Muhamad Sidik; Mochtar Ali Setyo Yudono; Edwinanto Edwinanto
Circuit: Jurnal Ilmiah Pendidikan Teknik Elektro Vol 7, No 1 (2023)
Publisher : PTE FTK UIN Ar-Raniry

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/crc.v7i1.15449

Abstract

The Pelabuhan Ratu Steam Power Plant (PLTU) is a large-scale power plant that generates a lot of heat energy. Sea water is one of the cooling systems or cooling systems that can be used, but the continuous use of sea water as a cooling system media at the power plant has a negative impact because if the cooling system output water has a hot temperature that exceeds the provisions, it will disrupt marine life near the water disposal area. A cooling system, also known as an outfall or downstream channel. In order to address these issues, a study titled the monitoring and control system of the cooling valve on the outfall water temperature of the Pelabuhan Ratu PLTU with Fuzzy Tsukamoto was conducted. The goal of this study is to create a prototype of an Internet of Things (IoT)-based cooling valve system. The main device connected to the internet is the Nodemcu ESP8266 microcontroller, and two DS18B20 temperature sensors are used to measure the water temperature, as well as the Tsukamoto Fuzzy method to control the water-cooling servo valve downstream of the channel. The research results from the prototype design of the cooling valve system were successful, and the system is able to control the server motor that is connected to the outfall water temperature cooling valve using the input value from the DS18B20 temperature sensor, with a 90% success rate. The output of this system can be monitored and controlled using the Tsukamoto Fuzzy method. With the implementation of this system, it is possible to keep the outfall water temperature below the maximum threshold set by the Ministry of Environment and Forestry.
Design and Analysis of Grid Connected Photovoltaic Rooftop System in Emergency Room (IGD) Regional General Hospital (RSUD) Hj. Anna Lasmanah Banjarnegara Efendi Efendi; Alfaozan Imani Muslim; Aryo De Wibowo Muhammad Sidik
Fidelity : Jurnal Teknik Elektro Vol 5 No 1 (2023): Edisi Januari 2023
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v5i1.134

Abstract

Renewable energy in Indonesia is numerous, abundant, and diverse. Almost every region in Indonesia has renewable energy sources that can be utilized to become renewable power plants, which are industrial or large-scale, small-scale, or only for regional use. Itself. PLTS is a power plant with many opportunities that can be developed in Indonesia. Based on the results of the analysis that has been carried out, several conclusions can be drawn about designing a rooftop solar power plant using the HelioScope software. The results show estimated energy production obtained through simulations using HelioScope for one year is 882,398 kWh, with the highest production occurring in May at 8,554.6 kWh and the lowest production in November at 6,120.3 kWh. HelioScope application, besides being able to display the irradiation results and production results of the designed or simulated PLTS, HelioScope also shows that there are power losses that affect PLTS production, which is caused by the temperature of the solar cell module of 6.7%. At the same time, other power losses and the most negligible effect are caused by the conductor of 0.3%. The HelioScope application makes it easy to determine the initial design for installing solar panels for a house or building and where we want or are going.
Design of Solar Rooftop Using Helioscope in The Gazebo of Pelabuhan Ratu Coal Power Plant Bayu Indrawan; Aryo De Wibowo Muhammad Sidik; Anggy Pradiftha Junfithrana; Marina Artiyasa; Ilman Himawan Kusumah; Andika Kurniawan
Fidelity : Jurnal Teknik Elektro Vol 5 No 1 (2023): Edisi Januari 2023
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v5i1.137

Abstract

Research on simulating the design of a solar power plant in the village of Wantilan Antosari aims to promote the use of new renewable energy sources. The method of PLTS is completed by paying attention to and accounting for the tilt angle in the Helioscope Software, designing the positioning of solar panel modules, designing inverters, configuring circuits, accounting for the number of batteries used, choosing Battery Control Units, and calculating investment. According to the simulation run by the helioscope program, nine solar modules at an angle of 58.7 can power a battery with a 500Ah capacity. The simulation also establishes an inverter with a 24.06kW inverter that generates 4.0 kWp power.
Studi Potensi Pemanfaatan Energi Baru Terbarukan (EBT) untuk Mendukung Sistem Ketenagalistrikan di Wilayah IKN Aryo Sidik; Harurikson Lumbantobing; Bayu Indrawan; Edwinanto Edwinanto; Yudha Putra; Yufriana Imamulhak; Ripal Rinaldi
Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan) Vol. 6 No. 2 (2023): Volume VI - Nomor 2 - Maret 2023
Publisher : Teknik Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47970/siskom-kb.v6i2.379

Abstract

Abstract—Energi adalah salah satu kebutuhan utama manusia untuk mendukung aktivitas yang jumlahnya terus semakin tinggi seiring dengan pertumbuhan penduduk dan ekonomi. Disisi lain, sebagian besar energi yang digunakan saat ini berasal dari energi berbasis fosil yg mempunyai sifat tidak terbarukan sehingga akan habis cadangannya Bila digunakan secara terus menerus. Indonesia secara umum serta wilayah IKN secara khusus mempunyai beraneka ragam potensi energi baru terbarukan (EBT) yg tersebar pada sebagian besar daerahnya, mencakup tenaga surya, tenaga angin, bioenergi, tenaga laut, hingga geothermal. Penelitian ini bertujuan untuk melakukan pemetaan potensi EBT di wilayah IKN untuk mendukung sasaran pemerintah mencapai bauran energi nasional dan mendorong diversifikasi energi pada sistem ketenagalistrikan. Hasil penelitian memberikan adanya potensi EBT yang relatif besar dari berbagai jenis energi di daerah IKN yang bisa dimanfaatkan pada proses konversi menjadi tenaga listrik.
Co-Authors Abdul Hak Abdul Haris Kuspranoto Adeguna Ridlo Pramurti Adi Nugraha Adi Padilah Alfaozan Imani Muslim Ali Ibrahim Amrul Amrul Anang Suryana Anggy Pradiftha Junfithrana Aniati Anas Anindita Satria Surya Artiyasa, Marina Bayu Indrawan Brian Bramantyo S.D.A Harsono Christono, AB Denny Haryanto Sinaga Dhandis Rito Jintaka Edwinanto Edwinanto Edwinanto Edwinanto Edwinanto Edwinanto Edwinanto Edwinanto Efendi Efendi Efendi Efendi Efendi Efendi Eki Ahmad Zaki Hamidi Eva Fauziah Fredy Yusman Alexius Lase Gilang Insan Aghniya Gina Raodotul Jannah Hadiansyah Ma'sum Handrea Bernando Tambunan Handrea Bernando Tambunan Harurikson Lumbantobing Harurikson Lumbantobing Heliza Rahmania Hatta Hestie Ariestina Hikmawatty, Sitti Ilman Himawan Kusumah Ilman Himawan Kusumah Indrawan, Bayu Indri Aprianti Iqbal Tawakal Iredho Fani Reza Ivano Kumaran Jumadi Jumadi Kurniawan Lumbantobing, Harurikson mansyur abdul hamid Marina Artiyasa Marina Artiyasa Metodiusman Gulo Mochtar Ali Setyo Yudono Moh Ival Alpian S Mohammad Nashrul Hidayat MS Viktor Purhanudin Muchtar Ali Setyo Yudono Muhamad Ramdhani Firmansyah Muhammad Rifki Sofian Muhammad Shobirin Nadira Salsabila Oktaviani Narputro, Panji Pertiwi, Eka Nuragusti Purnama, Mery Christina Puspasari, Lidia Putri Erna Oktavia Rahmat Izwan Heroza RASYID, ERWIN Ridwan Maulana Ripal Rinaldi Rossanti, Endah Dwi Saraswati, Sri Septiani Astuti Sinta Apriliani Siregar, Mayer Abadi Siti Latifah Siti Nur Annisa Sonani, Nia Suriandhi, Denny Suriansha, Reza Tiara Azzahra Anzani Ujang Faisal Kusnadi Ula, Rini Khamimatul Utomo, Jepri Wicaksono, Bondan Yosep B. Hutahaean Yudha Putra Yudha Putra Yufriana Imamulhak Yufriana Imamulhak Yurikeu Putri Agustin Zafar Akbar