Claim Missing Document
Check
Articles

PENINGKATAN KINERJA PREDIKSI CACAT SOFTWARE DENGAN HYPERPARAMETER TUNING PADA ALGORITMA KLASIFIKASI DEEP FOREST Emma Andini; Faisal, Mohammad Reza; Rudy Herteno; Nugroho, Radityo Adi; Friska Abadi; Muliadi
Jurnal Mnemonic Vol 5 No 2 (2022): Mnemonic Vol. 5 No. 2
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v5i2.4793

Abstract

Prediksi cacat software adalah salah satu studi pada bidang Rekayasa Perangkat Lunak yang telah diteliti oleh banyak peneliti. Tujuan dari studi ini adalah untuk mencari tahu algoritma yang dapat memberikan kinerja prediksi cacat software yang lebih baik. Salah satu penelitian yang telah dilakukan adalah melakukan prediksi cacat software dengan menggunakan algoritma berbasis pohon seperti Decision Tree, Random Forest dan Deep Forest. Deep Forest adalah algoritma klasifikasi berbasis pohon yang baru yang merupakan perbaikan dari algoritma Random Forest. Namun implementasi Deep Forest dalam penelitian terdahulu masih belum memberikan kinerja yang maksimal. Hasil pada penelitian terdahulu menunjukan bahwa kinerja algoritma Deep Forest masih ada yang lebih rendah dibandingkan algoritma berbasis pohon yang lain. Pada penelitian ini berfokus pada peningkatan kinerja algoritma berbasis pohon dengan melakukan normalisasi pada dataset dan hyperparameter tuning pada algoritma klasifikasi dengan menggunakan pencarian grid. Dataset yang digunakan adalah 3 dataset dari ReLink yaitu Apache, Safe, dan Zxing. Setiap model prediksi divalidasi dengan Stratified 10-Fold Cross Validation dan kinerja dievaluasi menggunakan AUC. Dari hasil eksperimen yang didapatkan,hasil prediksi dari pendekatan yang diusulkan lebih baik daripada metode sebelumnya.
Image Classification of Traditional Indonesian Cakes Using Convolutional Neural Network (CNN) Azizah, Azkiya Nur; Budiman, Irwan; Indriani, Fatma; Faisal, Mohammad Reza; Herteno, Rudy
Computer Engineering and Applications Journal Vol 13 No 2 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i2.469

Abstract

Indonesia is one of the countries famous for its traditional culinary. Traditional cakes in Indonesia are traditional snacks typical of the archipelago's culture which have a variety of textures, shapes, colors that vary and some are similar so that there are still many people who do not know the name of the cake from the many types of traditional Indonesian cakes. The problem can be solved by creating a traditional cake image recognition system that can be programmed and trained to classify various types of traditional Indonesian cakes. The Convolutional Neural Network method with the AlexNet architecture model is used in this research to predict various kinds of traditional Indonesian cakes. The dataset used in this research is 1846 datasets with 8 classes of cake images. This study trained the AlexNet model with several optimizers, namely, Adam optimizer, SGD, and RMSprop. The best parameters from the model testing results are at batchsize 16, epoch 50, learning rate 0.01 for SGD optimizer and learning rate 0.001 for Adam and RMSprop optimizers. Each optimizer tested produces different accuracy, precision, recall, and f1_score values. The highest test results that have been carried out on the image dataset of typical Indonesian traditional cakes are obtained by the Adam optimizer with an accuracy value of 79%.
Feature Selection Using Firefly Algorithm With Tree-Based Classification In Software Defect Prediction Maulida, Vina; Herteno, Rudy; Kartini, Dwi; Abadi, Friska; Faisal, Mohammad Reza
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 4 (2023): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i4.315

Abstract

Defects that occur in software products are a universal occurrence. Software defect prediction is usually carried out to determine the performance, accuracy, precision and performance of the prediction model or method used in research, using various kinds of datasets. Software defect prediction is one of the Software Engineering studies that is of great concern to researchers. This research was conducted to determine the performance of tree-based classification algorithms including Decision Trees, Random Forests and Deep Forests without using feature selection and using firefly feature selection. And also know the tree-based classification algorithm with firefly feature selection which can provide better software defect prediction performance. The dataset used in this study is the ReLink dataset which consists of Apache, Safe and Zxing. Then the data is divided into testing data and training data with 10-fold cross validation. Then feature selection is performed using the Firefly Algorithm. Each ReLink dataset will be processed by each tree-based classification algorithm, namely Decision Tree, Random Forest and Deep Forest according to the results of the firefly feature selection. Performance evaluation uses the AUC value (Area under the ROC Curve). Research was conducted using google collab and the average AUC value generated by Firefly-Decision Tree is 0.66, the average AUC value generated by Firefly-Random Forest is 0.77, and the average AUC value generated by Firefly-Deep Forest is 0, 76. The results of this study indicate that the approach using the Firefly algorithm with Random Forest classification can work better in predicting software damage compared to other tree-based algorithms. In previous studies, tree-based classification with hyperparameter tuning on software defect prediction datasets obtained quite good results. In another study, the classification performance of SVM, Naïve Bayes and K-nearest neighbor with firefly feature selection resulted in improved performance. Therefore, this research was conducted to determine the performance of a tree-based algorithm using the firefly selection feature.
LSTM and Bi-LSTM Models For Identifying Natural Disasters Reports From Social Media Yunida, Rahmi; Faisal, Mohammad Reza; Muliadi; Indriani, Fatma; Abadi, Friska; Budiman, Irwan; Prastya, Septyan Eka
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 4 (2023): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i4.319

Abstract

Natural disaster events are occurrences that cause significant losses, primarily resulting in environmental and property damage and in the worst cases, even loss of life. In some cases of natural disasters, social media has been utilized as the fastest information bridge to inform many people, especially through platforms like Twitter. To provide accurate categorization of information, the field of text mining can be leveraged. This study implements a combination of the word2vec and LSTM methods and the combination of word2vec and Bi-LSTM to determine which method is the most accurate for use in the case study of news related to disaster events. The utility of word2vec lies in its feature extraction method, transforming textual data into vector form for processing in the classification stage. On the other hand, the LSTM and Bi-LSTM methods are used as classification techniques to categorize the vectorized data resulting from the extraction process. The experimental results show an accuracy of 70.67% for the combination of word2vec and LSTM and an accuracy of 72.17% for the combination of word2vec and Bi-LSTM. This indicates an improvement of 1.5% achieved by combining the word2vec and Bi-LSTM methods. This research is significant in identifying the comparative performance of each combination method, word2vec + LSTM and word2vec + Bi-LSTM, to determine the best-performing combination in the process of classifying data related to earthquake natural disasters. The study also offers insights into various parameters present in the word2vec, LSTM, and Bi-LSTM methods that researchers can determine.
A Comparative Study of Machine Learning Methods for Baby Cry Detection Using MFCC Features Riadi, Putri Agustina; Faisal, Mohammad Reza; Kartini, Dwi; Nugroho, Radityo Adi; Nugrahadi, Dodon Turianto; Magfira, Dike Bayu
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 1 (2024): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i1.350

Abstract

The vocalization of infants, commonly known as baby crying, represents one of the primary means by which infants effectively communicate their needs and emotional states to adults. While the act of crying can yield crucial insights into the well-being and comfort of a baby, there exists a dearth of research specifically investigating the influence of the audio range within a baby cry on research outcomes. The core problem of research is the lack of research on the influence of audio range on baby cry classification on machine learning. The purpose of this study is to ascertain the impact of the duration of an infant’s cry on the outcomes of machine learning classification and to gain knowledge regarding the accuracy of results F1 score obtained through the utilization of the machine learning method. The contribution is to enrich an understanding of the application of classification and feature selection in audio datasets, particulary in the context of baby cry audio. The utilized dataset, known as donate-a-cry-corpus, encompasses five distinct data classes and possesses a duration of seven seconds. The employed methodology consists of the spectrogram technique, cross-validation for data partitioning, MFCC feature extraction with 10, 20, and 30 coefficients, as well as machine learning models including Support Vector Machine, Random Forest, and Naïve Bayes. The findings of this study reveal that the Random Forest model achieved an accuracy of 0.844 and an F1 score of 0.773 when 10 MFCC coefficients were utilized and the optimal audio range was set at six seconds. Furthermore, the Support Vector Machine model with an RBF kernel yielded an accuracy of 0.836 and an F1 score of 0.761, while the Naïve Bayes model achieved an accuracy 0.538 and F1 score of 0.539. Notably, no discernible differences were observed when evaluating the Support Vector Machine and Naïve Bayes methods across the 1-7 second time trial. The implication of this research is to establish a foundation for the advancement of premature illness identification techniques grounded in the vocalizations of infants, thereby facilitating swifter diagnostic processes for pediatric practitioners.
An Approach to ECG-based Gender Recognition Using Random Forest Algorithm Arif, Nuuruddin Hamid; Faisal, Mohammad Reza; Farmadi, Andi; Nugrahadi, Dodon; Abadi, Friska; Ahmad, Umar Ali
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 2 (2024): April
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i2.363

Abstract

Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, identity, emotional state, age, and gender, has exhibited potential for biometric recognition. The Random Forest method proves essential to facilitate gender classification based on ECG. This research delves into applying the Random Forest method for gender classification, utilizing ECG data from the ECG ID Database. The primary aim is to assess the efficacy of the Random Forest algorithm in gender classification. The dataset employed in this study comprises 10,000 features, encompassing both raw and filtered datasets, evaluated through 10-fold cross-validation with Random Forest Classification. Results reveal the highest accuracy for raw data at 55.000%, with sensitivity at 46.452% and specificity at 63.548%. In contrast, the filtered data achieved the highest accuracy of 65.806%, with sensitivity and specificity at 67.097%. These findings conclude that the most significant impact on gender classification in this study lies in the low sensitivity value in raw data. The implications of this research contribute to knowledge by presenting the performance results of the Random Forest algorithm in ECG-based gender classification.
Comparative Study of Various Hyperparameter Tuning on Random Forest Classification With SMOTE and Feature Selection Using Genetic Algorithm in Software Defect Prediction Suryadi, Mulia Kevin; Herteno, Rudy; Saputro, Setyo Wahyu; Faisal, Mohammad Reza; Nugroho, Radityo Adi
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 2 (2024): April
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i2.375

Abstract

Software defect prediction is necessary for desktop and mobile applications. Random Forest defect prediction performance can be significantly increased with the parameter optimization process compared to the default parameter. However, the parameter tuning step is commonly neglected. Random Forest has numerous parameters that can be tuned, as a result manually adjusting parameters would diminish the efficiency of Random Forest, yield suboptimal results and it will take a lot of time. This research aims to improve the performance of Random Forest classification by using SMOTE to balance the data, Genetic Algorithm as selection feature, and using hyperparameter tuning to optimize the performance. Apart from that, it is also to find out which hyperparameter tuning method produces the best improvement on the Random Forest classification method. The dataset used in this study is NASA MDP which included 13 datasets. The method used contains SMOTE to handle imbalance data, Genetic Algorithm feature selection, Random Forest classification, and hyperparameter tuning methods including Grid Search, Random Search, Optuna, Bayesian (with Hyperopt), Hyperband, TPE and Nevergrad. The results of this research were carried out by evaluating performance using accuracy and AUC values. In terms of accuracy improvement, the three best methods are Nevergrad, TPE, and Hyperband. In terms of AUC improvement, the three best methods are Hyperband, Optuna, and Random Search. Nevergrad on average improves accuracy by about 3.9% and Hyperband on average improves AUC by about 3.51%. This study indicates that the use of hyperparameter tuning improves Random Forest performance and among all the hyperparameter tuning methods used, Hyperband has the best hyperparameter tuning performance with the highest average increase in both accuracy and AUC. The implication of this research is to increase the use of hyperparameter tuning in software defect prediction and improve software defect prediction performance.
Implementation of C5.0 Algorithm using Chi-Square Feature Selection for Early Detection of Hepatitis C Disease MAHMUD, Mahmud; BUDİMAN, Irwan; INDRİANİ, Fatma; KARTİNİ, Dwi; FAİSAL, Mohammad Reza; ROZAQ, Hasri Akbar Awal; YILDIZ, Oktay; Caesarendra, Wahyu
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 2 (2024): April
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i2.384

Abstract

Hepatitis C, a significant global health challenge, affects 71 million people worldwide, with severe complications such as cirrhosis and hepatocellular carcinoma. Despite its prevalence and availability in rapid diagnostic tests (RDTs), the need for accurate early detection methods remains critical. This research aims to enhance hepatitis C virus classification accuracy by integrating the C5.0 algorithm with Chi-Square feature selection, addressing the limitations of current diagnostic approaches and potentially reducing diagnostic errors. This research explores the development of a machine learning model for hepatitis C prediction, utilizing a publicly available dataset from Kaggle. It encompasses preprocessing techniques such as label encoding, handling missing values, normalization, feature selection, model development, and evaluation to ensure the model's efficacy and accuracy in diagnosing hepatitis C. The findings of this study reveal that implementing Chi-Square feature selection significantly enhances the effectiveness of machine learning algorithms. Specifically, the combination of the C5.0 algorithm and Chi-Square feature selection yielded a remarkable accuracy of 96.75%, surpassing previous research benchmarks. This highlights the potent synergy between advanced feature selection techniques and machine learning algorithms in improving diagnostic precision. The study conclusively demonstrates that machine learning is an effective tool for detecting hepatitis C, showcasing the potential to enhance diagnostic accuracy significantly. As a future recommendation, adopting AutoML is suggested to periodically automate the selection of the optimal algorithm, promising further improvements in detection capabilities.
Optimizing Software Defect Prediction Models: Integrating Hybrid Grey Wolf and Particle Swarm Optimization for Enhanced Feature Selection with Popular Gradient Boosting Algorithm Angga Maulana Akbar; Herteno, Rudy; Saputro, Setyo Wahyu; Faisal, Mohammad Reza; Nugroho, Radityo Adi
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 2 (2024): April
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i2.388

Abstract

Software defects, also referred to as software bugs, are anomalies or flaws in computer program that cause software to behave unexpectedly or produce incorrect results. These defects can manifest in various forms, including coding errors, design flaws, and logic mistakes, this defect have the potential to emerge at any stage of the software development lifecycle. Traditional prediction models usually have lower prediction performance. To address this issue, this paper proposes a novel prediction model using Hybrid Grey Wolf Optimizer and Particle Swarm Optimization (HGWOPSO). This research aims to determine whether the Hybrid Grey Wolf and Particle Swarm Optimization model could potentially improve the effectiveness of software defect prediction compared to base PSO and GWO algorithms without hybridization. Furthermore, this study aims to determine the effectiveness of different Gradient Boosting Algorithm classification algorithms when combined with HGWOPSO feature selection in predicting software defects. The study utilizes 13 NASA MDP dataset. These dataset are divided into testing and training data using 10-fold cross-validation. After data is divided, SMOTE technique is employed in training data. This technique generates synthetic samples to balance the dataset, ensuring better performance of the predictive model. Subsequently feature selection is conducted using HGWOPSO Algorithm. Each subset of the NASA MDP dataset will be processed by three boosting classification algorithms namely XGBoost, LightGBM, and CatBoost. Performance evaluation is based on the Area under the ROC Curve (AUC) value. Average AUC values yielded by HGWOPSO XGBoost, HGWOPSO LightGBM, and HGWOPSO CatBoost are 0.891, 0.881, and 0.894, respectively. Results of this study indicated that utilizing the HGWOPSO algorithm improved AUC performance compared to the base GWO and PSO algorithms. Specifically, HGWOPSO CatBoost achieved the highest AUC of 0.894. This represents a 6.5% increase in AUC with a significance value of 0.00552 compared to PSO CatBoost, and a 6.3% AUC increase with a significance value of 0.00148 compared to GWO CatBoost. This study demonstrated that HGWOPSO significantly improves the performance of software defect prediction. The implication of this research is to enhance software defect prediction models by incorporating hybrid optimization techniques and combining them with gradient boosting algorithms, which can potentially identify and address defects more accurately
Gender Classification on Social Media Messages Using fastText Feature Extraction and Long Short-Term Memory Sa’diah, Halimatus; Faisal, Mohammad Reza; Farmadi, Andi; Abadi, Friska; Indriani, Fatma; Alkaff, Muhammad; Abdullayev, Vugar
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 3 (2024): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i3.407

Abstract

Currently, social media is used as a platform for interacting with many people and has also become a source of information for social media researchers or analysts. Twitter is one of the platforms commonly used for research purposes, especially for data from tweets written by individuals. However, on Twitter, user information such as gender is not explicitly displayed in the account profile, yet there is a plethora of unstructured information containing such data, often unnoticed. This research aims to classify gender based on tweet data and account description data and determine the accuracy of gender classification using machine learning methods. The method used involves FastText as a feature extraction method and LSTM as a classification method based on the extracted data, while to achieve the most accurate results, classification is performed on tweet data, account description data, and a combination of both. This research shows that LSTM classification on account description data and combined data obtained an accuracy of 70%, while tweet data classification achieved 69%. This research concludes that FastText feature extraction with LSTM classification can be implemented for gender classification. However, there is no significant difference in accuracy results for each dataset. However, this research demonstrates that both methods can work well together and yield optimal results.
Co-Authors Abdul Gafur Abdullayev, Vugar Achmad Zainudin Nur Adawiyah, Laila Admi Syarif Ahmad Rusadi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Andi Farmadi Andi Farmadi Andi Farmadi Angga Maulana Akbar Annisa Rizqiana Arie Sapta Nugraha Arif, Nuuruddin Hamid Arifin Hidayat Azizah, Azkiya Nur Bachtiar, Adam Mukharil Bahriddin Abapihi Bayu Hadi Sudrajat Dike Bayu Magfira, Dike Bayu Djordi Hadibaya Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Emma Andini Fatma Indriani Fatma Indriani Fatma Indriani Favorisen R. Lumbanraja Fitra Ahya Mubarok Fitriyana, Silfia Friska Abadi Friska Abadi Friska Abadi Ghinaya, Helma Hanif Rahardian Herteno, Rudy Irwan Budiman Irwan Budiman Irwan Budiman Ivan Sitohang Julius Tunggono Jumadi Mabe Parenreng Junaidi, Ridha Fahmi Karlina Elreine Fitriani Keswani, Ryan Rhiveldi Kevin Yudhaprawira Halim Kurnianingsih, Nia Lilies Handayani Liling Triyasmono Lisnawati Mahmud Mahmud Mauldy Laya Mera Kartika Delimayanti Miftahul Muhaemen Muflih Ihza Rifatama Muhamad Ihsanul Qamil Muhammad Al Ichsan Nur Rizqi Said Muhammad Alkaff Muhammad Angga Wiratama Muhammad Fauzan Nafiz Muhammad Haekal Muhammad Haekal Muhammad Iqbal Muhammad Irfan Saputra Muhammad Itqan Mazdadi Muhammad Janawi Muhammad Khairi Ihsan Muhammad Mada Muhammad Mursyidan Amini Muhammad Rizky Adriansyah Muhammad Rusli Muhammad Sholih Afif Muhammad Zaien MUJIZAT KAWAROE Muliadi Muliadi Muliadi Muliadi Aziz Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Mustofa, Fahmi Charish Ngo, Luu Duc Nor Indrani Noryasminda Nugrahadi, Dodon Nurlatifah Amini Nursyifa Azizah Oni Soesanto Prastya, Septyan Eka Purnajaya, Akhmad Rezki Putri Nabella Radityo Adi Nugroho Radityo Adi Nugroho Rahayu, Fenny Winda Rahmad Ubaidillah Rahmat Ramadhani Rahmat Ramadhani Rahmina Ulfah Aflaha Ratna Septia Devi RAUDLATUL MUNAWARAH Reina Alya Rahma Reza Rendian Septiawan Riadi, Putri Agustina Rinaldi Riza Susanto Banner Rizal, Muhammad Nur Rizki, M. Alfi Rizky, Muhammad Hevny Rossyking, Favorisen Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Rudy Herteno Rudy Herteno Said, Muhammad Al Ichsan Nur Rizqi SALLY LUTFIANI Salsabila Anjani Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sarah Monika Nooralifa Sari, Risna Sa’diah, Halimatus Septyan Eka Prastya Septyan Eka Prastya Setyo Wahyu Saputro Setyo Wahyu Saputro Siti Aisyah Solechah Solly Aryza Sri Redjeki Sri Redjeki Sugiarto, Iyon Titok Sulastri Norindah Sari Suryadi, Mulia Kevin Tri Mulyani Triando Hamonangan Saragih Umar Ali Ahmad Utami, Juliyatin Putri Vina Maulida, Vina Wahyu Caesarendra Wahyu Dwi Styadi Wahyudi Wahyudi Wildan Panji Tresna Winda Agustina Yenni Rahman YILDIZ, Oktay Yudha Sulistiyo Wibowo Yunida, Rahmi