Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Multidisciplinary Applied Natural Science

Integrating The Network Pharmacology and Molecular Docking Confirmed with In Vitro Toxicity to Reveal Potential Mechanism of Non–Polar Fraction of Cyperus rotundus Linn as Anti-Cancer Candidate Susianti Susianti; Syaiful Bahri; Sutopo Hadi; Arif Setiawansyah; Lanang Rachmadi; Ibnu Fadilah; Maya Ganda Ratna
Journal of Multidisciplinary Applied Natural Science Vol. 5 No. 1 (2025): Journal of Multidisciplinary Applied Natural Science
Publisher : Pandawa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47352/jmans.2774-3047.228

Abstract

Cyperus rotundus Linn is a plant that is historically used in traditional medicine with anti-cancer potential. Despite the evidence of C. rotundus anti-cancer effect on various human carcinoma cell lines, its pharmacological mechanism remains unclear, particularly its non-polar fraction. This study was employed to provide mechanistic insight regarding the anti-cancer properties of C. rotundus non-polar fraction by integrating in silico and in vitro approach. The network pharmacology study was used to observe the molecular targets of n-hexane fraction of C. rotundus, confirmed by molecular docking simulation using Autodock 4.2. The in vitro toxicity using BSLT method was used to strengthen the in silico result. The network pharmacology investigation revealed several core targets including PI3K, MAPK1, mTOR, RAF1, and NF-κB in the potential anti-cancer mechanism of C. rotundus. The molecular docking study illustrated that compound 3 (Isopetasol) and compound 9 (alpha-cyperone) as the most promising compound in n-hexane fraction of C. rotundus, with free binding energies consistently less than -7 kcal/mol in all targets. The in vitro BSLT signified the in silico results, highlighting the highest toxicity of fraction 3 exhibited among others. Integrating the network pharmacology and molecular docking simulation along with in vitro toxicity have provided evidence of the anti-cancer potential of n-hexane fraction of C. rotundus. Specific compounds and the molecular targets responsible for its anti-cancer properties have been identified, warranting further investigations.
Uncovering The Pharmacological Mechanism of Ficus elastica as Anti-hyperlipidemia Candidate: LC-HRMS, Network Pharmacology, In vitro and In vivo Studies Gita Susanti; Yufri Aldi; Dian Handayani; Friardi Ismed; Arif Setiawansyah
Journal of Multidisciplinary Applied Natural Science Vol. 5 No. 1 (2025): Journal of Multidisciplinary Applied Natural Science
Publisher : Pandawa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47352/jmans.2774-3047.249

Abstract

Hyperlipidemia is a major risk factor for cardiovascular diseases. While conventional treatments exist, there is a growing interest in natural remedies with fewer side effects. Ficus elastica has promising medicinal properties, yet its potential as an anti-hyperlipidemic agent remains unexplored. This study aimed to investigate the anti-hyperlipidemic effects of F. elastica using an integrated approach of LC-HRMS-based chemical bioinformatics and in vitro/in vivo experimental validation. The anti-hyperlipidemic potential of F. elastica and its mechanism of action were screened using integrative computational network pharmacology followed by in vitro HMG-CoA reductase inhibition and in vivo lipid-lowering activity in a hyperlipidemia rat model. Network pharmacology analysis identified STAT3, HSP90AA1, and TLR4 as potential core targets involved in lipid and atherosclerosis-related KEGG pathways. Molecular docking simulations revealed high-affinity interactions between F. elastica compounds and the identified targets, notably compound 41 and compound 61. In vitro assay demonstrated that ethanolic extract of F. elastica inhibited HMG-CoA reductase with an IC50 of 297.73 µg/mL. In vivo experiment using a hyperlipidemic rat model showed significant reductions in total cholesterol, triglycerides, and increased HDL levels. The reduction of triglycerides and elevation of HDL level after F. elastica ethanolic extract supplementation is similar to the effect from supplementation of simvastatin. These findings suggest that F. elastica ethanolic extract possesses notable anti-hyperlipidemic properties, likely mediated through multiple molecular targets and pathways. The study highlights the potential of F. elastica ethanolic extract as a promising candidate for anti-hyperlipidemic therapy and underscores the efficacy of integrating computational and experimental approaches in natural product research.