Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Adaptive Inertia Weight Particle Swarm Optimization for Augmentation Selection in Coral Reef Classification with Convolutional Neural Networks Prabowo, Dwi Puji; Rohman, Muhammad Syaifur; Megantara, Rama Aria; Pergiwati, Dewi; Saraswati, Galuh Wilujeng; Pramunendar, Ricardus Anggi; Shidik, Guruh Fajar; Andono, Pulung Nurtantio
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.2726

Abstract

Indonesia possesses the world's largest aquatic resources, with 17,504 islands and 6.49 million square kilometers of sea. Located in the coral triangle, Indonesia is home to diverse marine life, including vital coral reefs. However, these reefs face threats from climate change, pollution, and human activities, endangering biodiversity and coastal communities. Therefore, monitoring and preservation are crucial. This study evaluates various augmentation methods for classifying underwater coral reef images using Convolutional Neural Networks (CNNs). Effective augmentation methods are essential due to the unique characteristics of these images. The methodology includes testing different augmentation methods, epoch parameters, and CNN parameters on a coral reef image dataset. Five optimization algorithms (AIWPSO, GA, GWO, PSO, and FOX) are compared. The highest accuracy, 95.64%, is achieved at the 10th epoch. AIWPSO and GA show the highest average accuracies, 93.44%, and 93.50%, respectively, with no significant performance differences among the algorithms. Statistical analysis using the Wilcoxon test indicates a significant difference between training and validation accuracy (p-value = 0.0020). These findings underscore the importance of selecting augmentation methods that align with the characteristics of each optimization algorithm to enhance classification performance. The results provide valuable insights into improving the quality and diversity of input data for classification algorithms in underwater image analysis. They highlight the necessity of matching augmentation methods to specific optimization algorithms to boost accuracy and effectiveness significantly. Future research should explore additional augmentation methods and optimization algorithms further to enhance the robustness and accuracy of underwater image classification.
Co-Authors Abdussalam Abdussalam, Abdussalam Affandy Affandy Aisyatul Karima Andrean, Muhammad Niko Andreas Wilson Setiawan Anggraini, Fitria Anhsori, Khusman Astuti, Yani Parti Azzahra, Tarissa Aura Budi Harjo Cahaya Jatmoko Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Chaerul Umam Chaerul Umam Christy Atika Sari Dewi Pergiwati Dliyauddin, Muhammad Doheir, Mohamed Dwi Eko Waluyo Dwi Puji Prabowo, Dwi Puji Dzaky, Azmi Abiyyu Edi Noersasongko Egia Rosi Subhiyakto, Egia Rosi Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erlin Dolphina Erna Zuni Astuti Fafaza, Safira Alya Fajrian Nur Adnan Fakhrurrozi Fakhrurrozi, Fakhrurrozi Firmansyah, Rusmal Harun Al Azies Hayu Wikan Kinasih Heru Lestiawan I Ketut Eddy Purnama Ika Pantiawati Islam, Hussain Md Mehedul Junta Zeniarja Kusuma, Edi Jaya Kusumawati, Yupie L. Budi Handoko Lenci Aryani Megantara, Rama Aria Mochamad Hariadi Muhammad Huda, Alam Muhammad Naufal, Muhammad Ningrum, Amanda Prawita Nurmandhani, Ririn Paramita, Cinantya Pergiwati, Dewi Praskatama, Vincentius Pujiono Pujiono Pulung Nurtantio Andono Purwanto Purwanto Putra, Permana Langgeng Wicaksono Ellwid Rafsanjani, Muhammad Ivan Rahadian, Arief Ramadhan Rakhmat Sani Ramadhani, Irfan Wahyu Rastri Prathivi Ratmana, Danny Oka Ricardus Anggi Pramunendar Riri Damayanti Apnena Rohman, Muhammad Syaifur Saputra, Filmada Ocky Saraswati, Galuh Wilujeng Sarker, Md. Kamruzzaman Savicevic, Anamarija Jurcev Shier Nee Saw Sinaga, Daurat Sindhu Rakasiwi Soeleman, M. Arief Sri Winarno Swanny Trikajanti Widyaatmadja Vincent Suhartono Wahyu Adi Nugroho Wellia Shinta Sari Winarsih, Nurul Anisa Sri Yaacob, Noorayisahbe Mohd Yani Parti Astuti Zainal Arifin Hasibuan Zami, Farrikh Al Zul Azri bin Muhamad Noh