Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Teknologi Informasi

Penerapan Media Pembelajaran Berbasis Animasi Flash Pada Mata Pelajaran Rangakain Listrik di SMK Negeri 1 Padang Juliwardi, Ilham; Ardiansyah, Muhammad; Suhendra, Rivansyah; Walid, Muhammad; Astrianda, Nica
Jurnal Teknologi Informasi Vol 1, No 2 (2022): Oktober
Publisher : Universitas Teuku Umar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (263.321 KB) | DOI: 10.35308/jti.v1i2.6454

Abstract

This research is oriented to the learning outcomes of students who have not yet reached the KKM in the subject of electrical circuits for class X TITL at SMKN 1 Padang. Many factors affect the low student learning outcomes such as the learning process using conventional methods and the media used by the teacher in learning is a module and only uses the blackboard. Based on these factors, research is conducted in the form of experiments to improve student learning outcomes by using media-based flash animation learning media. The method used in this research is quasi-experimental with Pretest-Posttest One Group Design. The subjects of this study were students of class X SMKN 1 Padang semester January-June 2016, which amounted to 31 students. Collecting data in this study using a test (Pretest-Posttest), namely objective questions. The test questions used were tested first to determine the validity, reliability, level of difficulty, and discriminating power of the questions. Based on the results of the study obtained 25 items. The results showed that there was an increase in student learning outcomes of class X TITL SMKN 1 Padang in the subject of Electrical Engineering. The increase occurred at a high level (0.71) where 18 students were at a high level and 13 other students were at an increasing level. Based on the results of the study, it can be concluded that the application of flash animation media on electrical circuit subjects for class X TITL SMKN 5 Padang can improve student learning outcomes at a high level (0.71).
Penerapan CNN Arsitektur VGG16 untuk Deteksi Kesegaran Ikan Berdasarkan Citra Digital Suhendra, Rivansyah; Ayu, Ratih Sari; Qaisa, Rara Syifa; Juliwardi, Ilham; Astrianda, Nica; Arisna, Puput; Syahril, Alfis; Hasanah, Uswatun
Jurnal Teknologi Informasi Vol 4, No 1 (2025): Mei
Publisher : Universitas Teuku Umar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35308/jti.v4i1.12301

Abstract

Kesegaran ikan merupakan indikator utama dalam menentukan kualitas dan keamanan produk perikanan. Penilaian secara manual masih bersifat subjektif dan memerlukan keahlian khusus. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi tingkat kesegaran ikan secara otomatis menggunakan algoritma Convolutional Neural Network (CNN) dengan arsitektur VGG16. Data berupa 1.378 citra mata ikan dikumpulkan dari pasar ikan di Meulaboh dan Blangpidie, kemudian melalui proses preprocessing menggunakan teknik contrast stretching. Dataset dibagi menjadi data latih (80%) dan data validasi (20%). Proses pelatihan dilakukan dengan menerapkan augmentasi dan normalisasi data guna meningkatkan kemampuan generalisasi model. Hasil pengujian menunjukkan bahwa model mampu mengklasifikasikan citra dengan akurasi, precision, recall, dan F1-score sebesar 100%. Analisis confusion matrix menunjukkan tidak adanya kesalahan klasifikasi pada data validasi. Temuan ini menunjukkan bahwa citra mata ikan merupakan fitur visual yang efektif untuk mengidentifikasi tingkat kesegaran. Sistem yang dikembangkan memiliki potensi untuk diimplementasikan dalam proses sortir dan kontrol mutu hasil perikanan. Penelitian selanjutnya disarankan untuk memperluas cakupan jenis ikan dan pengujian dalam kondisi lingkungan nyata guna meningkatkan robustitas model.