Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Question Answering System pada Chatbot Telegram Menggunakan Large Language Models (LLM) dan Langchain (Studi Kasus UU Kesehatan): Question Answering System on Telegram Chatbot Using Large Language Models (LLM) and Langchain (Case Study: Health Law) Lubis, Anggun Tri Utami BR.; Harahap, Nazruddin Safaat; Agustian, Surya; Irsyad, Muhammad; Afrianty, Iis
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1378

Abstract

Di bidang kesehatan, peraturan yang diterapkan dikenal sebagai hukum kesehatan, yang bertujuan untuk melindungi kepentingan pasien dan meningkatkan standar praktik medis. Pada tahun 2023, Indonesia menerapkan UU No 17 Tahun 2023 tentang Kesehatan, mencakup hak pasien, standar layanan, dan partisipasi masyarakat. Omnibus Law ini diharapkan menyelesaikan masalah kesehatan dan melindungi penyedia layanan. Penelitian ini bertujuan untuk mengembangkan Question Answering System (QAS) berbasis chatbot yang terintegrasi dengan Telegram. Metode yang digunakan adalah Langchain dan Large Language Models (LLM). Langchain digunakan untuk memfasilitasi pembangunan chatbot, sementara LLM adalah jenis model AI yang menggunakan pendekatan pembelajaran mesin untuk menghasilkan teks yang serupa dengan bahasa manusia. Sumber data yang digunakan sebagai basis pengetahuan adalah UU No 17 tahun 2023 tentang kesehatan. Chatbot yang dibangun telah berhasil memberikan jawaban kepada pengguna dengan hasil pengujian menggunakan BERTScore mendapatkan rata-rata nilai precision, recall, f1-score masing-masing sebesar 76%, 80%, 78%. Sedangkan untuk ROUGE-1 sebesar 60%, 45%, 50%, untuk ROUGE-2 sebesar 34%, 25%, 28%,  dan untuk ROUGE-L sebesar 45%,34%,38%.
Penerapan Teknologi LangChain pada Question Answering System Fikih Empat Madzhab: Application of Langchain Technology to the Fiqh Question Answering System of Four Madhhab Rahayu, Suci; Harahap, Nazruddin Safaat; Agustian, Surya; Pizaini, Pizaini
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1397

Abstract

Fikih sebagai ilmu yang luas, terkadang menimbulkan beragam persoalan dan perbedaan pandangan antara madzhab-madzhabnya. Tujuan pandangan ulama tentang isu-isu fikih adalah untuk memperkaya opsi pemahaman, bukan menyebabkan perpecahan. Keberadaan mazhab penting bagi umat Islam awam dalam memahami hukum Islam, karena membantu dalam menafsirkan Al-Qur'an dan Hadits untuk masalah sehari-hari. Pengiriman informasi saat ini dapat dilakukan dengan cepat dan mudah, salah satunya melalui aplikasi tanya jawab atau Question Answering System (QAS) terkait materi yang ingin diketahui oleh pengguna. Sehingga pada penelitian ini bertujuan membuat sebuah QAS berbasis web tentang fikih empat madzhab menggunakan teknologi LangChain dan Large Language Model (LLM). LangChain dan model LLM mampu memberikan jawaban atas pertanyaan terkait file Portable Document Format (PDF). QAS dilatih menggunakan kumpulan data berupa file PDF serta memanfaatkan model LLM untuk menghasilkan respons teks yang relevan terhadap pertanyaan yang diajukan oleh pengguna. Sistem yang telah dikembangkan berhasil memberikan respons kepada pengguna dengan pengujian menggunakan BERTScore yang mendapatkan nilai rata-rata dari precision sebesar 80%, recall sebesar 81%, dan f-1 score sebesar 81%. Sedangkan ROUGEScore mendapatkan nilai rata-rata dari ROUGE-1 sebesar 56%, 58%, dan 56%, ROUGE-2 sebesar 33%, 33%, 33%, dan ROUGE-L sebesar 43%, 44%, dan 43%.
Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Mini Batch K-Means Clustering: Grouping Electricity Distribution Data Using The Mini Batch K-Means Clustering Algorithm Mulyadi, Syahrul; Insani, Fitri; Agustian, Surya; Afriyanti, Liza
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1425

Abstract

Manajemen distribusi listrik merupakan aspek penting dalam infrastruktur yang memerlukan pemahaman mendalam tentang pola distribusi di berbagai wilayah untuk memastikan pasokan listrik stabil bagi masyarakat dan pemerintah. Namun, mengelola data distribusi listrik yang melibatkan berbagai variabel seperti rumah tangga, industri, bisnis, sosial, gedung kantor pemerintah, dan jalan umum membutuhkan pendekatan yang efektif dalam mengelompokkan data untuk mengidentifikasi pola-pola yang signifikan. Penelitian ini bertujuan mengimplementasikan algoritma mini batch k-means untuk mengelompokkan distribusi listrik di setiap wilayah. Data yang digunakan dalam penelitian ini adalah data distribusi listrik dari tahun 2014-2022 yang terdiri dari 35 provinsi. Hasil pengujian menunjukkan bahwa terdapat tiga cluster yang signifikan dalam data peneliti, masing-masing ditandai dengan Silhouette Score yang berbeda. Cluster dengan Silhouette Score tertinggi adalah Cluster 2 dengan nilai 0.625, menunjukkan kohesi yang tinggi di wilayah regional Kalimantan-Sulawesi yang diamati dalam cluster 2 ini. Sementara itu, Cluster 4 memiliki Silhouette Score yang terendah dengan nilai 0.419, menunjukkan tingkat kohesi yang lebih rendah dalam pola distribusi listrik di setiap wilayah regional bagian Kalimantan-Sulawesi. Penelitian ini menegaskan bahwa algoritma mini batch k-means efektif untuk pengelompokkan data distribusi listrik dengan hasil yang memuaskan dalam pemisahan klaster yang berbeda
Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Density Based Spatial Clustering of Application With Noise (DBSCAN): Clustering Electricity Distribution Data Using Density-Based Spatial Clustering of Applications With Noise (DBSCAN) Algorithm Farid, Miftah; Insani, Fitri; Agustian, Surya; Afriyanti, Liza
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1426

Abstract

Pada masa kini, listrik sudah menjadi kebutuhan penting dalam kehidupan, karena kebanyakan aktivitas manusia bergantung pada listrik. Kebutuhan listrik pada setiap wilayah di Indonesia dipengaruhi oleh sejumlah faktor dan karakteristik khusus masing-masing. PLN mempublikasikan statistik penggunaan listrik untuk setiap wilayah di Indonesia dari tahun 2014 hingga 2022, yang terdiri dari 35 provinsi di Indonesia. Data ini menawarkan wawasan berharga untuk prediksi permintaan listrik, pelacakan tren historis untuk memprediksi pengembangan wilayah, memprioritaskan wilayah dengan permintaan tinggi untuk efisiensi dan konservasi energi, dan lain sebagainya.  Salah satu alat untuk mencapai tujuan tersebut adalah dengan mengelompokkan (clustering) wilayah berdasarkan karakteristik dan ciri-ciri wilayahnya. Penelitian ini melakukan proses clustering dengan membagi data pada tiga regional utama: Sumatera, Jawa-Bali, dan Kalimantan-Sulawesi, sementara regional Papua tidak dianalisis karena jumlah wilayah/propinsi yang terbatas. Metode yang dipakai adalah Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Tuning parameter dengan cara pencarian grid dilakukan untuk memperoleh hasil optimal berdasarkan silhouette score. Hasil clustering dapat memberikan gambaran keunikan profil konsumsi listrik di tiap wilayah, dengan silhouette score terbaik sebesar 0.62 untuk regional Jawa-Bali, 0,67 untuk Kalimantan-Sulawesi, dan 0,64 untuk Sumatera. Penelitian menunjukkan bahwa algoritma DBSCAN dapat digunakan untuk pengelompokkan distribusi listrik dengan hasil yang efektif.
Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Mean Shift: Clustering Electricity Distribution Data Using the Mean Shift Algorithm Utari, Roid Fitrah; Insani, Fitri; Agustian, Surya; Afriyanti, Liza
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1428

Abstract

Penelitian ini mengkaji regionalisasi dan klasterisasi data distribusi listrik di Indonesia menggunakan algoritma Mean Shift, dengan tujuan untuk meningkatkan efisiensi distribusi energi di berbagai wilayah geografis yang beragam. Listrik memiliki peran krusial dalam kehidupan modern namun distribusinya masih belum merata, terutama di daerah terpencil dan pedesaan yang terkendala oleh akses dan keterbatasan dana. Sebagai salah satu Bada Usaha Milik Negera (BUMN)  utama di sektor ketenagalistrikan, Perusahaan Listrik Negera (PLN) bertanggung jawab dalam menyediakan listrik di seluruh Indonesia, mendukung pertumbuhan ekonomi melalui penyediaan energi untuk sektor industri, pertanian, dan perdagangan. Dengan menggunakan algoritma Mean Shift, penelitian ini mengelompokkan Indonesia menjadi Sumatra, Jawa-Bali, Kalimantan-Sulawesi, dan Papua berdasarkan pola distribusi listrik, dengan menemukan bahwa pengaturan bandwidth optimal 0.5 menghasilkan tiga klaster per wilayah yang mencerminkan infrastruktur serupa, kebutuhan energi, dan sektor ekonomi dominan. Temuan ini menunjukkan fleksibilitas Mean Shift dalam menangani struktur data yang kompleks tanpa jumlah klaster yang telah ditentukan sebelumnya, yang penting untuk perencanaan strategis dalam pengelolaan energi di Indonesia demi mencapai distribusi listrik yang lebih efisien dan berkelanjutan
Perbandingan Performa Random Forest dan Long Short-Term Memory dalam Klasifikasi Teks Multilabel Terjemahan Hadits Bukhari: Comparison of Random Forest and Long Short-Term Memory Performance in Multilabel Text Classification of Bukhari Hadith Translation Ahmad, Rizmah Zakiah Nur; Harahap, Nazruddin Safaat; Agustian, Surya; Iskandar, Iwan; Sanjaya, Suwanto
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2046

Abstract

Hadits merupakan fondasi utama kedua dalam Islam, yang memandu umat Islam dalam menafsirkan nilai-nilai Islam dan mengimplementasikannya secara nyata dalam berbagai aspek kehidupan. Salah satu perawi hadits yang paling dihormati adalah Imam Bukhari, yang dikenal dengan ketelitian dan ketegasannya dalam memilih hadits-hadits yang otentik. Penelitian ini menggunakan data dari terjemahan hadis dari Sahih Bukhari ke dalam bahasa Indonesia yang telah diklasifikasikan ke dalam tiga kategori utama, yaitu anjuran, larangan, dan informasi. Untuk mengidentifikasi karakteristik masing-masing kategori, klasifikasi teks dilakukan dengan menggunakan dua metode populer, yaitu Random Forest (RF) dan Long Short-Term Memory (LSTM), yang dikenal efektif dalam memproses data teks berskala besar dan kompleks. Tujuan dari penelitian ini adalah untuk menguji perbedaan kinerja antara kedua metode tersebut dalam mengelompokkan hadis yang datanya telah lengkap. Hasil evaluasi menunjukkan bahwa metode RF mencapai akurasi tertinggi sebesar 89,48%, sedikit lebih unggul dari LSTM yang memperoleh 88,52%. Kedua metode mencatat nilai Hamming Loss yang sama, yaitu 0,1048 (89,52%). Temuan ini menunjukkan bahwa kelengkapan dan kualitas data hadis Bukhari berkontribusi dalam meningkatkan akurasi klasifikasi dengan memberikan konteks dan variasi yang lebih baik untuk model.
Perbandingan Performa Metode Klasifikasi Teks Multilabel Hadis Terjemahan Bukhari Menggunakan Support Vector Machine dan Long Short Term Memory: Performance Comparison of Multilabel Text Classification Methods on Translated Hadiths of Bukhari Using Support Vector Machine and Long Short Term Memory Ramadhani, Aulia; Safaat, Nazruddin; Agustian, Surya; Iskandar, Iwan; Sanjaya, Suwanto
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2051

Abstract

Hadis merupakan sumber hukum kedua dalam Islam, dan salah satu kitab hadis yang paling dikenal adalah Shahih al-Bukhari. Untuk mendukung pemahaman dan pengamalan yang tepat, hadis perlu diklasifikasikan secara akurat. Mengingat satu hadis dapat mengandung lebih dari satu informasi, pendekatan klasifikasi multilabel menjadi sangat relevan. Penelitian ini bertujuan untuk memberikan kontribusi dalam bidang klasifikasi teks dengan mengeksplorasi kombinasi metode dan parameter yang optimal untuk klasifikasi multilabel hadis. Hasil penelitian menunjukkan bahwa Support Vector Machine (SVM) memberikan performa terbaik pada label Larangan dengan Macro F1-score sebesar 82,57%, melalui kombinasi SVM + TF-IDF menggunakan kernel = linear, parameter C (regularization parameter) = 1 tanpa stopword removal dan tanpa balancing. Sementara itu, Long Short Term Memory (LSTM) juga unggul pada label Larangan dengan Macro F1-score 82,66% pada kombinasi parameter Epoch = 20, Dropout = 0.5, Dense = 128 dan Batch Size = 64 tanpa stopword removal dan tanpa balancing kombinasi ini juga menghasilkan nilai Hamming Loss terendah sebesar 10,452%, yang lebih baik dibandingkan dengan penelitian sebelumnya serta menunjukkan bahwa LSTM terbukti lebih efektif secara keseluruhan dengan penyetelan parameter yang tepat. Penelitian ini juga berkontribusi dalam peningkatan kualitas data dengan melengkapi matan hadis yang digunakan, sehingga menghasilkan performa klasifikasi yang lebih baik.
Klasifikasi Sentimen Menggunakan Metode Multilayer Perceptron dengan Fitur TF-IDF: Sentiment Classification Using Multilayer Perceptron Algorithm with TF-IDF Features Arasy, Abdurrahman; Agustian, Surya; Handayani, Lestari; Iskandar, Iwan
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2052

Abstract

Media sosial, khususnya Twitter (X), telah menjadi platform utama dalam diskusi politik dan kebijakan pemerintah. Istilah dalam pengiriman pesan pada Twitter dikenal sebagai Tweet yang terdiri dari pesan dengan maksimal 280 karakter. Meskipun Tweet seringkali hanya berupateks, juga dapat menyertakan hyperlink, video, dan jenis media lainnya yang dapat digunakan untuk mengukur opini publik. penelitian ini bertujuan mengklasifikasikan sentimen masyarakat terkait pengangkatan Kaesang Pangarep sebagai Ketua Umum Partai Solidaritas Indonesia (PSI) dengan metode Multi-Layer Perceptron (MLP) Classifier dengan pendekatan Term Frequency-Inverse Document Frequency (TF-IDF) menggunakan bahasa pemograman python. Data yang digunakan terdiri dari 300 tweet, dengan 100 tweet perkelas atau opsi untuk hasil yang optimal. Tiga kategori tersebut adalah positif, netral, dan negatif. Berdasarkan penelitian yang telah dilakukan metode terbaik mencapai F1-score sebesar 0,6767 dan akurasi 0,6667. Hasil ini menunjukkan bahwa kombinasi MLP Classifier dan TF-IDF dapat mengatasi keterbatasan dataset hingga tingkat tertentu dibandingkan metode baseline. Penelitian ini juga memberikan wawasan tentang optimasi klasifikasi sentimen dalam kondisi data terbatas, yang dapat diterapkan pada topik lain dengan permasalahan serupa
Co-Authors .Safrizal, Safrizal Afdhal Zikri Afriyanti, Liza Aftari, Dhea Putri AGUNG SUCIPTO Ahmad, Rizmah Zakiah Nur Alfitra Salam Arasy, Abdurrahman Ash Shiddicky Aulia Ramadhani Ayu Fransiska Baehaqi Delifah, Nur Dermawan, Jozu Dzaky Abdillah Salafy Eka Pandu Cynthia El Saputra, Yoga Elin Haerani Elvia Budianita Fahrezy, Irgi Faizah Husniah Fauzan Ray T Fauzi Ihsan Febi Yanto Febrian Rizki Adi Sutiyo Fitri Insani Fitri Insani Fitri Wulandari Fitri, Dina Deswara Fuji Astuti Gusti, Siska Kurnia Habib Hakim Sinaga Hadi, Mukhlis Halimah Hasibuan, Ilham Habibi Heru Wibowo Idhafi, Zaky Iffa, Marwika Rifattul Ihsan, Miftahul Iis Afrianty Iis Afrianty Illahi, Ridho Iman Fauzi Aditya Sayogo Indri Pangestuti Iwan Iskandar Jasril Jasril Jasril Jasril Jasril Jasril Lestari Handayani Lubis, Anggun Tri Utami BR. Miftah Farid Muhammad Fikry Muhammad Fikry Muhammad Iqbal Maulana Muhammad Irsyad Muhammad Irsyad Muhammad Ravil Muktar Sahbuddin Mukti M Kusairi Mulyadi, Syahrul Nadila Handayani Putri naldi, Afri Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Nazruddin Safaat H Negara, Benny Sukma Novriyanto Novriyanto Novriyanto Nurul Fatiara Oktavia, Lola Pangestu, Yoga Pizaini Pizaini Pranata, Joni Prima Yohana Putri Zahwa Putri, Adilah Atikah Putri, Atika Rahmad Abdillah Rahmad Kurniawan Ramadhani, Siti Reski Mai Candra Reski Mai Candra Rizqa Raaiqa Bintana Safrizal, Afri Naldi Salam Kurniawan Saputra, Ikhsan Dwi Saputra, M Ridho Saputra, Nugroho Wahyu Sinaga, Habib Hakim Siti Ramadhani Siti Ramadhani Siti Ramadhani Sri Puji Utami A. Subhi, Yazid Abdullah Suci Rahayu Sulistia Ningsih, Sulistia Suwanto Sanjaya Syaiful Azhar Trya Ayu Pratiwi Utari, Roid Fitrah Yusra Yusra Yusra, Yusra