cover
Contact Name
Irpan Adiputra pardosi
Contact Email
irpan@mikroskil.ac.id
Phone
+6282251583783
Journal Mail Official
sinkron@polgan.ac.id
Editorial Address
Jl. Veteran No. 194 Pasar VI Manunggal,
Location
Kota medan,
Sumatera utara
INDONESIA
Sinkron : Jurnal dan Penelitian Teknik Informatika
ISSN : 2541044X     EISSN : 25412019     DOI : 10.33395/sinkron.v8i3.12656
Core Subject : Science,
Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial Neural Network 14. Fuzzy Logic 15. Robotic
Articles 1,196 Documents
Design of Intelligent Model for Text-Based Fake News Detection Using K-Nearest Neighbor Method Murti, Hari; Sulastri, Sulastri; Santoso, Dwi Budi; Diartono, Dwi Agus; Nugroho, Kristiawan
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14306

Abstract

Text-based fake news detection is a crucial issue considering its negative impacts on society and individuals. One of the main impacts that has a significant and detrimental impact on society is disinformation, where false or misleading information can cause confusion and uncertainty in society. This can lead to misunderstandings and develop into riots in society which can lead to legal problems that are detrimental to society. In order to overcome this problem, a method is needed to detect fake news. This study aims to build a fake news detection method using machine learning, which is a technology widely used by researchers to detect and analyze past data. Various methods have been produced using machine learning, including the K-Nearest Neighbor (K-NN) method which is proposed as an effective solution to detect fake news. K-NN is a machine learning algorithm that works by classifying text based on its proximity to known data in feature space. This method is proposed because of its ability to handle non-linear data and its low complexity. The application of K-NN can increase the accuracy in detecting fake news by utilizing the characteristics of relevant text, thus helping in efforts to filter information and maintain the integrity of news circulating in the community. In a study conducted using the FakeNewsDetection dataset, the model evaluation results showed that KNN produced a Mean Absolute Error (MAE) of 0.011 and a Root Mean Squared Error (RMSE) of 0.077, better than the performance of other methods such as SVM and Neural Network.
Maturity Level Analysis of SPBE Service Domain Using Capability Maturity Model Integration at the Kominfo Palembang City Agustriani, Nyimas Hamidah Purnama; Titah, Titah; Sutabri, Tata
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14307

Abstract

This journal aims to analyze the maturity level of the implementation of Electronic-Based Government Systems (EBS) in the service domain at the Communication and Information Technology Office of Palembang City. This research uses the Capability Maturity Model Integration (CMMI) approach to evaluate processes, identify weaknesses, and provide recommendations for improvement.  CMMI was chosen because it can measure process effectiveness and help organizations achieve optimal performance. The research was conducted using survey and interview methods to collect data related to SPBE implementation. The collected data was analyzed using the CMMI framework to determine the maturity level from level 1 (Initial) to level 5 (Optimizing). The results of the analysis show that the maturity level of the SPBE service domain at the Communication and Information Technology Office of Palembang City is at level 3 (Defined) with a maturity level value of 3.66 from a recapitulation of a value mapped to each process area: OPF, OPD, MA, CAR and PPQA. Some areas need to be improved, especially related to lack of clearly defined and consistently applied standard operating procedures (SOPs) leads to variations in service delivery and hampers the overall effectiveness of SPBE implementation, performance monitoring mechanisms such as tracking and evaluation of service delivery outcomes are inadequate which makes it difficult to assess the effectiveness of SPBE services, existing systems are not fully compatible or lack the necessary features to support technology integration within the SPBE framework leading to inefficiencies and failure to leverage technology to improve public services. This research contributes by providing strategic recommendations to improve the maturity of SPBE implementation at the Communication and Informatics Office of Palembang City. The recommendations given are increasing the capacity of human resources, consistent application of standard operating procedures (SOPs), and the use of more integrated technology to support more effective and efficient services. The results of this study are expected to serve as a guide for the Communication and Information Technology Office of Palembang City in implementing SPBE more optimally.
Enhanced Semarang Batik Classification using MobileNetV2 and Data Augmentation Khoirunnisa, Emila; Alzami, Farrikh; Pramunendar, Ricardus Anggi; Megantara, Rama Aria; Naufal, Muhammad; Al-Azies, Harun; Winarno, Sri
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14308

Abstract

Batik, an Indonesian cultural heritage recognized by UNESCO, faces challenges in pattern identification and documentation, particularly for the younger generation. Previous studies on batik classification have shown limitations in handling small datasets and maintaining accuracy with limited computational resources. This research proposes an enhanced classification approach for Semarang Batik motifs using MobileNetV2 architecture combined with strategic data augmentation techniques. The study utilizes a dataset of 3,020 images comprising 10 distinct Semarang Batik motifs, implementing horizontal flipping, rotation, and zoom transformations to address dataset limitations. Our methodology incorporates transfer learning through ImageNet pre-trained weights and custom layer modifications to optimize the MobileNetV2 architecture for batik-specific features. The model achieves 100% accuracy on validation data, with precision, recall, and F1-scores consistently above 0.98 across all classes. The confusion matrix analysis reveals minimal misclassification between similar motif patterns, particularly in the Batik Blekok Warak and Batik Kembang Sepatu classes. This research contributes to cultural heritage preservation by providing an efficient, resource-conscious solution for automated batik pattern recognition, potentially supporting educational and commercial applications in the batik industry.
Implementation of LSA for Topic Modeling on Tweets with the Keyword ‘Kemenkeu’ Khariroh, Shofiyatul; Alzami, Farrikh; Indrayani, Heni; Dewi, Ika Novita; Marjuni, Aris; Adriani, Mira Riezky; Subowo, Moh Hadi
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14309

Abstract

This research explores public discourse on financial policies by analyzing tweets mentioning the keyword 'Kemenkeu' (Ministry of Finance). Using Latent Semantic Analysis (LSA), the study examined 10,099 tweets to uncover key topics that reflect public sentiment toward the Ministry’s policies. Preprocessing steps, such as stopword removal and stemming with Sastrawi, were essential to ensure the effectiveness of the analysis. The results revealed three main topics: Finance and Budget, Salaries and Employee Welfare, and Excise and Customs Regulations. These insights provide a better understanding of public opinion on financial issues and highlight the importance of proper text preprocessing in topic modeling. This approach demonstrates how LSA can be used as a tool for analyzing large-scale social media data, offering valuable input for policymakers. Future research could expand on this by using more advanced models or larger datasets to gain deeper insights.
Predicting IT Incident Duration using Machine Learning: A Case Study in IT Service Management Caturkusuma, Resha Meiranadi; Alzami, Farrikh; Nurhindarto, Aris; Sulistiyono, MY Teguh; Irawan, Candra; Kusumawati, Yupie
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14310

Abstract

In the digital era, ensuring customer satisfaction with IT services is crucial for business success. However, the complexity of IT infrastructure makes it difficult to manage services, requiring companies to focus on improving efficiency and reducing operational costs. One of the strategies used is Information Technology Service Management (ITSM), the main component of which is incident management, which aims to minimize service disruptions. While various studies on ITSM exist, research focused on Machine Learning models for predicting incident resolution times is relatively limited. This research aims to develop an incident resolution duration prediction model using a Random Forest Regressor-based regression approach. The dataset used is an event log from the ServiceNow system containing data on 24,918 incidents. The model was evaluated using the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R2 metrics, where the model achieved a MAE of 14.33 hours, RMSE of 69.8 hours, and R2 of 0.98. These results show that the model can provide accurate predictions and support better decision-making in IT incident handling. Time-related features, such as sys_update_month and closed_month, proved to be the most influential factors in predicting incident resolution duration.
Clustering Analysis of Stunting Risk Factors Using K-Means and Principal Component Analysis: A Case Study in Indonesian Regency Rohman, M. Hilma Minanur; Alzami, Farrikh; Hadi, Heru Pramono; Arifin, Zaenal; Sukamto, Titien Suhartini; Ashari, Ayu; Yusuf, Moh.
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14311

Abstract

Stunting, characterized by impaired growth and development in children, is one of the most serious public health problems often caused by chronic malnutrition. This study aims to identify patterns among stunting cases through clustering analysis of child health data. The algorithm used in this research uses K-Means. The dataset used in this study uses health data from 599 children in the Sambas Regency area of East Kalimantan Province. This dataset has several features that are quite diverse such as height, weight, age, nutritional intake, socioeconomic status, and others. This research process begins with cleaning the data, as well as looking at the correlation between features. One of the methods used is to conduct a data analysis process using Principal Component Analysis (PCA) which aims to reduce the dimensions of the data. After that, the process of finding the number of clusters using the Elbow method is carried out to determine the optimal number of clusters. This research uses 4 clusters in the process. The clustering results revealed that family structure (main family vs extended family) and parental income levels significantly influence stunting prevalence in the region.
Performance Level Analysis On Learning Vector Quantization And Cohonen Algorithms Pasaribu, Roni Fredy Halomoan; Zarlis, Muhammad; Nababan, Erna Budhiarti
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14313

Abstract

Biometric identification is an alternative for a security system that consists of physiological characteristics and behavioral characteristics. Physiological characteristics are relatively stable physical characteristics such as fingerprints, hand lines, facial features, tooth patterns, and the retina of the eye. Behavioral characteristics such as signature, speech patterns, or typing rhythm. The function of a signature is proof in a document which states that the party signing, knows and agrees to all the contents of a document. There are several stages in the signature pattern image recognition system, namely the signature pattern image is produced through a scanning process, then the resulting digital signature image is cut (scaling) manually, the next process is thresholding, edge detection, image division, and representation. input value. The method used in recognizing signature patterns is the learning vector quantization (LVQ) artificial neural network method and kohonen self-organizing map (SOM). In Learning vector quantization, the initial weights are updated using existing patterns. Meanwhile, in the self-organizing map method, Kohonen takes initial weights randomly, then these weights are updated until they can classify themselves into the desired number of classes. The processes that occur in the artificial neural network method require a relatively long time. This is influenced by the large number of data samples used as a means of updating the trained weights. From the results of the research conducted, it shows that the learning rate value that was built around 0.2 < α ≤ (10) ^ (-2) can produce better signature pattern recognition accuracy.
Usability Evaluation of Lecturer Information System in ITB STIKOM Bali Dwipayana, I Gusti Made Surya; Candiasa, I Made; Dewi, Luh Joni Erawati
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14315

Abstract

This research aims to provide a deeper understanding of the usability aspects of information systems, as well as help create more effective and efficient solutions in supporting academic activities in higher education. The ITB STIKOM Bali, Lecturer Information System (Sistem Informasi Dosen/ SID) is a system developed to assist lecturers in carrying out their academic responsibilities. This system has become a very vital tool in supporting various academic activities of lecturers. This research will be conducted using the Concurrent Think Aloud (CTA) method, Performance Measurement, and System Usability Scale (SUS) to assess effectiveness, efficiency, and user satisfaction of the system. The system was found effective, with a success rate exceeding 78%. Advanced users achieved a 95% success rate, while beginner users achieved 86%, with errors primarily in navigation-related tasks. User satisfaction analysis via SUS showed skilled users rated the system at 84.75 (Grade A, Acceptable), whilst beginner respondents scored 52.5 (Grades D, Marginal Low), reflecting usability challenges for beginners. Performance Measurement highlighted issues with small font sizes and unclear navigation, while CTA identified difficulties with the logout button, lack of search functionality, unreadable interface text, and unclear functional position menus. Recommendations include increasing font size to Arial 14, redesigning the logout button, adding search bars, and enhancing functional menus to include research and community service options. These improvements aim to enhance system usability and user experience across all proficiency levels.
Development of Mobile Application by Applying Content-Based Filtering Hermanto, Nandang; Darmayanti, Irma; Saputra, Dimas; Hidayatuloh, Aden
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14320

Abstract

The rapid advancements in information technology have transformed modern lifestyles, driving changes in consumer behavior and expectations, especially in the retail industry. This study focuses on developing a mobile application for Ampu Mart, a newly established retail business in Indonesia, to optimize product recommendation systems using the Content-Based Filtering (CBF) approach. The research integrates CBF with string matching and cosine similarity algorithms to provide personalized product recommendations based on customer preferences, enhancing user satisfaction and supporting more efficient purchasing decisions. The methodology involves several stages, including problem identification through observation and interviews, data collection on product attributes and customer preferences, system design, prototype development, implementation, and testing. The application leverages advanced algorithms to analyze product characteristics, ensuring relevant recommendations by matching user preferences with product attributes. User Acceptance Testing (UAT) conducted with 30 participants—customers, administrators, and management—evaluated the application's functionality, usability, accuracy, and performance. Results indicate that the mobile application improves the shopping experience and boosts sales by offering accurate, user-centered recommendations. The findings highlight the strategic importance of integrating intelligent technology into e-commerce platforms to enhance competitiveness in the retail market. Future work recommends incorporating Collaborative Filtering techniques to further enrich the recommendation system by analyzing collective customer behavior.
Fraud Detection in Mobile Phone Recharge Transactions Using K-Means and T-SNE Visualization Sakti, Irwin; Mareta, Arvin; Wasito, Ito
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14330

Abstract

The surge in digital transactions has introduced vulnerabilities in mobile recharge systems, making them susceptible to fraudulent activities that compromise financial security and operational integrity. This study presents to address these challenges by employing a novel fraud detection framework that integrates K-Means clustering and t-Distributed Stochastic Neighbour Embedding (t-SNE) visualization. This work advances the field by integrating scalable, unsupervised learning techniques with robust visualization tools, offering a practical framework for fraud detection in mobile recharge systems. Leveraging a dataset of over 200,000 transactions, this research systematically identifies anomalies indicative of fraudulent behaviour, focusing on key transactional attributes such as processing times, geographic patterns, and error frequencies. The methodology begins with data preprocessing to ensure consistency, followed by the application of K-Means clustering to partition transactions into meaningful clusters. To enhance interpretability, t-SNE visualization is employed, enabling a clear representation of high-dimensional data and the identification of anomalous patterns. A comparative analysis with Autoencoders highlights the strengths of K-Means in terms of computational efficiency, interpretability, and clustering quality, as evidenced by higher Silhouette Scores (0.6215) and lower Davies-Bouldin Index values (0.7074). The combination of K-Means and t-SNE enables service providers to identify fraudulent activities with greater precision, offering actionable insights to mitigate financial risks. This study not only addresses the critical need for robust fraud detection systems but also lays a strong foundation for future advancements through the integration of hybrid models and enhanced feature engineering, demonstrating its adaptability to similar domains.

Filter by Year

2016 2025


Filter By Issues
All Issue Vol. 9 No. 4 (2025): Articles Research October 2025 Vol. 9 No. 3 (2025): Article Research July 2025 Vol. 9 No. 2 (2025): Research Articles April 2025 Vol. 9 No. 1 (2025): Research Article, January 2025 Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024 Vol. 8 No. 3 (2024): Research Artikel Volume 8 Issue 3, July 2024 Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024 Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024 Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023 Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023 Vol. 7 No. 2 (2023): Research Article, Volume 7 Issue 2 April, 2023 Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023 Vol. 6 No. 4 (2022): Article Research: Volume 6 Number 4, October 2022 Vol. 6 No. 3 (2022): Article Research Volume 6 Number 3, July 2022 Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022 Vol. 6 No. 1 (2021): Article Research Volume 6 Issue 1: January 2021 Vol. 5 No. 2 (2021): Article Research Volume 5 Number 2, April 2021 Vol. 5 No. 2B (2021): Article Research October 2021 Vol 4 No 2 (2020): SinkrOn Volume 4 Number 2, April 2020 Vol. 5 No. 1 (2020): Article Research, October 2020 Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019 Vol 3 No 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol. 3 No. 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol 3 No 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol. 2 No. 2 (2018): SinkrOn Volume 2 Nomor 2 April 2018 Vol. 2 No. 1 (2017): SinkrOn Volume 2 Nomor 1 Oktober 2017 Vol. 1 No. 2 (2017): SinkrOn Volume 1 Nomor 2 April 2017 Vol. 1 No. 1 (2016): SinkrOn Oktober Volume 1 Edisi 1 Tahun 2016 More Issue