The digitalization of public services has encouraged the development of the Jamsostek Mobile (JMO) application by BPJS Ketenagakerjaan. This application is expected to provide convenience in accessing information, JHT claims, and other services. However, user reviews on the Google Play Store show diverse perceptions, ranging from satisfaction to technical complaints. This study aims to conduct sentiment analysis on user reviews of the JMO application by classifying opinions into positive, negative, and neutral sentiments. Data were collected through crawling from the Google Play Store and processed using text preprocessing stages, including data cleaning, case folding, stopword removal, tokenization, stemming, and Term Frequency–Inverse Document Frequency (TF-IDF) weighting. The classification process was then carried out using three machine learning algorithms, namely Support Vector Machine (SVM), Random Forest, and Logistic Regression. The results indicate that negative sentiment dominates with 46%, followed by positive sentiment at 40% and neutral at 14%. Most complaints are related to login difficulties, application errors, and technical bugs in claim features. In terms of algorithm performance, SVM with a linear kernel achieved the highest accuracy of 87.5% and an F1-score of 0.87, outperforming Random Forest (85.3%) and Logistic Regression (82.7%). Academically, this study reinforces the effectiveness of SVM in sentiment analysis using TF-IDF, while practically providing recommendations for BPJS Ketenagakerjaan to improve system stability, login speed, and reduce application bugs to enhance user satisfaction.