p-Index From 2021 - 2026
6.127
P-Index
Claim Missing Document
Check
Articles

Analisis Perbandingan Akurasi Pre-Trained Convolutional Neural Network Untuk Klasifikasi Kelompok Usia Pengunjung Rumah Sakit Arnes Sembiring; Sayuti Rahman; Dodi Siregar; Muhammad Zen; Suriati Suriati
Journal of Information System Research (JOSH) Vol 4 No 2 (2023): January 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v4i2.2913

Abstract

Children are not allowed to visit the hospital. Children should not visit the hospital for two reasons, namely the patient's side and the child's side. On the patient's side, patients need peace of mind during treatment and recovery. The noise generated by children makes the atmosphere not conducive and increases the patient's stress level. On the child's side, there are two factors, namely immunity, and trauma. Children have incomplete immunity so they are easily infected by viruses and bacteria. A child's immune disorder will harm the child's development. Apart from viruses and bacteria, in hospitals, there are also patients with major injuries such as those resulting from accidents. Children who see these large wounds can traumatize themselves and interfere with the child's growth and development. The age classification of visitors supports for hospital management to limit visitors based on age. Visitors categorized as children are visitors aged 12 years or younger. The method used for age group classification is the pre-trained CNN, including Alexnet, VGGNet, GoogleNet, ResNet, and AqueezeNet. We conducted a preliminary study using the All-Age-Faces (AAF) dataset as test data that represents the age of hospital visitors. The dataset is divided into two classes, namely children and adults. Based on the SqueezeNet test, it is a better method in terms of training accuracy and validation. Based on the order of accuracy validation, SqueezeNet succeeded in recognizing age groups with an accuracy of 93.09%, VGGNet 92.72%, AlexNet 91.44%, GoogleNet 90.92%, and ResNet 90.62%. This research is expected to contribute to helping control visitors to the hospital.
RANCANG BANGUN MINIATUR SISTEM ALAT PENGUKUR STANDAR KEBISINGAN KNALPOT SEPEDA MOTOR BERBASIS ARDUINO UNO Budi Santoso; Sayuti Rahman; Arnes Sembiring
METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi Vol. 9 No. 1 (2023): Volume 9 Nomor 1
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/mtk.v9i1.1366

Abstract

Sound is one element of the vibration of an object whare the vibration occurs around the air that propagates from all directions whare the results vary form the air pressure that applies to the surface of the eardrum that is heard, Motorcycles are vehicles that are ofthen used as transportation that is used with this transportation to make it easier for users and the sound produced from the exhaust is a noise that is often heard on the highway and there based on these problems, the authors design a miniature system for measuring standard on the entire LM 393 Sound Sensor series to measure the level of noise produced by the exhaust and OLED which serves to display sensor values. The way of application is that the system and gets information on the sound sensor value from a miniature standard exhaust noise gauge, to fine out whether the value generated by the user can see the result on the OLED screen.
Teknologi Pengembangan Jaringan Internet Untuk Sekolah di Pedesaan Tengku Mohd Diansyah; Ilham Faisal; Dodi Siregar; Ade Zulkarnain Hasibuan; Sayuti Rahman
JPM: Jurnal Pengabdian Masyarakat Vol. 3 No. 3 (2023): Januari 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jpm.v3i3.413

Abstract

In this community service activity we are developing an internet network that will be used by schools in rural areas, one of the areas in Stabat City in building this internet network we use the ubnt antenna which is reliable in spreading signals in the countryside and our goal is to build an internet network in the village, namely to help the community in obtaining information that is currently very fast and the obstacles that the surrounding community has are very difficult to connect to the internet network after the team pays attention to the problem because of the large number of palm trees that make it very difficult to get a signal in the village and even the school when the school is very fast. The obstacle that the village has is that the signal in the village is not up to 2 bars so that the surrounding community is very difficult to connect to the internet network after the team noticed the problem because of the large number of palm trees which made the signal very difficult to get by local residents and even schools currently have difficulty in the learning process, let alone accessing dapodik owned by the school which must be connected to the internet network.
Pengenalan ChatGPT untuk Meningkatkan Pengetahuan Siswa-Siswi di SMK Negeri 1 Pantai Labu Sayuti Rahman; Arnes Sembiring; Rachmat Aulia; Haida Dafitri; Risko Liza
Prioritas: Jurnal Pengabdian Kepada Masyarakat Vol 5 No 01 (2023): EDISI MARET 2023
Publisher : Universitas Harapan Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35447/prioritas.v5i01.744

Abstract

Siswa SMK sering menghadapi tantangan dalam pembelajaran seperti akses informasi yang terbatas, kesulitan dalam memecahkan masalah, dan kurangnya sumber belajar yang relevan. Oleh karena itu perlu metode atau alat untuk memcahkan masalah ini,salah satunya adalah ChatGPT. ChatGPT dapat memenuhi kebutuhan siswa dengan menyediakan akses informasi yang lebih luas, membantu dalam pembelajaran mandiri, dan memberikan panduan serta penjelasan tambahan dalam memecahkan masalah. Penggunaan ChatGPT juga memungkinkan siswa mengakses sumber daya pembelajaran tambahan di luar jam pelajaran. Hasil pengabdian menunjukkan bahwa penggunaan ChatGPT memberikan manfaat yang signifikan bagi siswa dan guru, dengan kemampuan ChatGPT dalam menjawab pertanyaan, meringkas dokumen, menerjemahkan teks, dan memahami kode program. Respon siswa setelah pelatihan juga sangat positif terhadap penggunaan ChatGPT dalam pembelajaran. Sehingga, ChatGPT efektif dalam memenuhi kebutuhan pembelajaran siswa di SMK Negeri 1 Pantai Labu.
Prototype Mesin Penakar Gula Pasir Berbasir Ardiuno Uno Pada UMKM Alfyanang Fattulah; Sayuti Rahman; Imran Lubis
SNASTIKOM Vol. 2 No. 1 (2023): SEMINAR NASIONAL TEKNOLOGI INFORMASI & KOMUNIKASI (SNASTIKOM) 2023
Publisher : Unit Pengelola Jurnal Universitas Harapan Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (494.024 KB)

Abstract

Advances in technology today have provided many benefits in various sectors, one of which is in the trade sector. Generally, traders, especially SMEs, still use conventional equipment in their activities. For example, they still use conventional scales to weigh or measure sugar, rice and so on. This activity takes a long time because traders have to reduce or add sugar if the weight is not suitable. This process often makes the weight of sugar imprecise and causes losses for traders. To overcome losses for traders, a tool is needed that can facilitate the activity of weighing the sugar. With today's very rapid technological advances, a tool can be made that can weigh sugar accurately, automatically and can be adjusted to the needs of traders. The tool uses the Arduino Uno microcontroller as the center of the system being built and also as a liaison between the sensors used. The working system is where there is a sugar storage device and automatic sugar weighing, the maximum sugar storage is 5000 grams. On the tool there are several buttons such as the 250 gram, 500 gram kg and 1000 gram buttons. When the button is pressed, the tool will remove the sugar from the storage area and weigh according to the button pressed
Normalization Layer Enhancement in Convolutional Neural Network for Parking Space Classification sayuti rahman; Marwan Ramli; Arnes Sembiring; Muhammad Zen; Rahmad B.Y Syah
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 23 No 3 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i3.3871

Abstract

The research problem of this study is the urgent need for real-time parking availability information to assist drivers in quickly and accurately locating available parking spaces, aiming to improve upon the accuracy not achieved by previous studies. The objective of this research is to enhance the classification accuracy of parking spaces using a Convolutional Neural Network (CNN) model, specifically by integrating an effective normalizing function into the CNN architecture. The research method employed involves the application of four distinct normalizing functions to the EfficientParkingNet, a tailored CNN architecture designed for the precise classification of parking spaces. The results indicate that the EfficientParkingNet model, when equipped with the Group Normalization function, outperforms other models using Batch Normalization, Inter-Channel Local Response Normalization, and Intra-Channel Local Response Normalization in terms of classification accuracy. Furthermore, it surpasses other similar CNN models such as mAlexnet, you only look once (Yolo)+mobilenet, and CarNet in the same classification task. This demonstrates that EfficientParkingNet with Group Normalization significantly enhances parking space classification, thus providing drivers with more reliable and accurate parking availability information.
KLASIFIKASI JENIS KENDARAAN PADA JALAN RAYA MENGGUNAKAN YOLOV7 Bayu Aditya Pratama; Sayuti Rahman; Arnes Sembiring
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 5 No 4 (2023): EDISI 18
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v5i4.3493

Abstract

This research aims to develop a classification system capable of identifying types of vehicles on the highway using YOLOv7 (You Only Look Once version 7), a deep learning-based object detection model that can be used for real-time object detection. With the rapid growth of traffic conditions, monitoring and managing traffic become increasingly important to reduce congestion and improve road safety. The research involves collecting image data and labeling the types of vehicles found on the highway. Subsequently, training the YOLOv7 model using the obtained dataset to classify various types of vehicles such as cars, motorcycles, trucks, and buses. The results of this study indicate that YOLOv7 can be efficiently used to classify types of vehicles on the highway with a fairly good level of accuracy, reaching a maximum of 86% for video and 91% for image detection.
Pelatihan Media Website Sebagai Sarana Promosi Produk UMKM Desa Sei Limbat Muhammad Zen; Chairul Rizal; Sayuti Rahman; Risko Liza; Rachmat Aulia
Prioritas: Jurnal Pengabdian Kepada Masyarakat Vol 5 No 02 (2023): EDISI SEPTEMBER 2023
Publisher : Universitas Harapan Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35447/prioritas.v5i02.850

Abstract

Pengembangan UMKM Desa merupakan pendorong utama pertumbuhan ekonomi di wilayah pedesaan. UMKM Desa bertujuan untuk menghasilkan produk dengan tingkat daya saing yang tinggi, memastikan produk-produk tersebut telah memenuhi standar kualitas, pengemasan, perizinan, serta sertifikasi yang diperlukan. Salah satu produk unggulan yang telah siap untuk dipasarkan adalah gula aren, yang memiliki beberapa varian produk. Strategi pemasaran saat ini dilakukan secara tradisional, baik melalui penjualan langsung, pameran produk, maupun melalui platform pasar digital.Pengembangan UMKM yang mendapatkan bimbingan dari pemerintah desa memiliki nilai tambah yang signifikan dalam membangun kepercayaan pelanggan terhadap produk. Oleh karena itu, diperlukan solusi untuk mempromosikan produk-produk UMKM sebagai produk yang didukung secara aktif oleh Desa Sei Limbat. Dalam rangka meningkatkan keterampilan masyarakat Desa Sei Limbat, terutama generasi muda, dapat dilakukan pelatihan untuk mengembangkan media website menggunakan Content Management System (CMS) seperti Wordpress yang merupakan salah satu CMS populer saat ini. Tujuan dari pelatihan ini adalah untuk memberikan pengetahuan tambahan kepada masyarakat desa dalam bidang teknologi serta memungkinkan produk-produk yang dihasilkan untuk dipromosikan melalui platform website yang mereka bangun. Hal ini diharapkan dapat meningkatkan visibilitas dan penetrasi pasar bagi UMKM Desa Sei Limbat.
Analisis Existing Convolutional Neural Network Untuk Klasifikasi Usia Pengunjung Rumah Sakit: Studi Kasus Pemantauan Anak dan Dewasa Harahap, Herlina; Rahman, Sayuti; Zen, Muhammad; Suriati, Suriati
Explorer Vol 4 No 1 (2024): January 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/explorer.v4i1.881

Abstract

The purpose of this study is to examine the Convolutional Neural Network (CNN) model for classifying the age groups of hospital visits, both children and adults. Hospitals serve as treatment facilities for a variety of ailments caused by viruses, germs, car accidents, and other factors. Children are not permitted to visit the hospital due to hurdles to patient comfort as well as hazards associated with immunity and trauma to children. As a result, a digital strategy is required to monitor the presence of youngsters in the hospital setting. The notion of computer vision and the Convolutional Neural Network (CNN) are employed in this study to attain this goal. The dataset utilized is All-Age-Faces (AAF), which includes photos of human faces ranging in age from 2 to 80 years. To categorize visitors into children or adults, two CNN architectures, ResNet and SqueezeNet, are used with fine-tuning (FT) and full retraining (FR) approaches. The accuracy of FR-ResNet was 97.22%, beating the accuracy of the previous research FT-SqueezeNet, which was 93.09%, better to 4.13%. This study confirmed that the use of CNN, namely the FR-ResNet technique, was effective in accurately categorizing the age of hospital visits. Controlling children's access to hospital areas can help reduce the danger of illness transmission.
IMPLEMENTASI TRANSFER LEARNING UNTUK KLASIFIKASI PENYAKIT PADA DAUN CABAI MENGGUNAKAN CNN Setyadi, Rahmat Arief; Rahman, Sayuti; Manurung, Dionikxon; Hasanah, Mardiatul; Indrawati, Asmah
Djtechno: Jurnal Teknologi Informasi Vol 5, No 2 (2024): Agustus
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/djtechno.v5i2.4642

Abstract

Penelitian ini bertujuan untuk mengklasifikasikan penyakit pada daun cabai merah menggunakan metode Convolutional Neural Network (CNN) dengan pendekatan transfer learning, khususnya arsitektur ResNet101. Indonesia, sebagai negara agraris, memiliki banyak petani yang mengandalkan tanaman cabai merah sebagai salah satu komoditas utama. Namun, penyakit daun cabai sering kali menurunkan kualitas dan kuantitas hasil panen. Dalam upaya meningkatkan deteksi dini penyakit, penelitian ini memanfaatkan teknologi deep learning untuk menganalisis citra daun cabai. Dataset yang digunakan terdiri dari citra penyakit daun cabai merah yang telah diaugmentasi, dengan total 2128 gambar yang dibagi menjadi data training sebanyak 1702 citra dan data validasi sebanyak 426 citra. Penelitian ini membandingkan kinerja berbagai arsitektur CNN, termasuk AlexNet, GoogleNet, VGGNet16, dan ResNet50, serta lapisan-lapisan pada arsitektur ResNet. Hasil penelitian menunjukkan bahwa augmentasi dataset meningkatkan akurasi validasi dari 89.72% menjadi 97.18%. ResNet101 mencapai akurasi validasi tertinggi sebesar 98.12%, menunjukkan efektivitas transfer learning dalam tugas klasifikasi penyakit daun cabai. Penelitian ini menunjukkan bahwa penggunaan metode CNN dengan transfer learning, khususnya arsitektur ResNet101, sangat efektif untuk mendeteksi dan mengklasifikasikan penyakit pada daun cabai merah. Peningkatan kinerja model melalui augmentasi dataset dan pemilihan arsitektur yang tepat dapat membantu meningkatkan kualitas dan kuantitas hasil panen, serta mendukung pertanian cerdas di Indonesia
Co-Authors Adinda Titania Ady Pratama, Ramadhan Alfyanang Fattulah Andi Marwan Elhanafi Ari Usman Arnes Sembiring Arnes Sembiring Arnes Sembiring Arnes Sembiring Arnes Sembiring Arnes Sembiring Arnes Sembiring Asih, Munjiat Setiani Asmah Indrawati Bayu Aditya Pratama Bayu Syah, Rahmad Budi Santoso Budi Santoso Chairul Rizal Chairul Rizal Chiuloto, Kalvin Dadan Ramdan Daffa, Daffa Zain Shahriza Desi Yanti Dodi Siregar Emil Fitranshah Aliff S Erianto Ongko Fera Damayanti Finta Aramita Fiqi Arfian Hafifah, Febri Haida Dafitri Haida Dafitri Haida Dafitri Harahap, Herlina Hartono Hartono Hartono Hartono Hartono Hartono Hasibuan, Ade Zulkarnain Hasibuan, Muhammad Ridwan Herlina Andriani Simamora Ilham Faisal Ilham Faisal Irwan Irwan Khahfi Zuhanda, Muhammad Kharunnisa Kharunnisa Lili Suryati Lubis, Husni lubis, ihsan M F Verri Anggriawan Manurung, Dionikxon Mardiatul Hasanah Marischa Elveny, Marischa Martini, Dewi Marwan Ramli Marwan Ramli Muchzakhir Bustari Mufida Khairani Mufida Khairani Muhammad Khahfi Zuhanda Muhammad Rizky Irwansyah Muhammad Zen Muhammad Zen, Muhammad Munadi Munadi Muzdalifah Ulfayani Putra, Andre Kurnia Rachmat Aulia Rachmat Aulia Rachmat Aulia, Rachmat Rahmad B.Y Syah Rahmad Syah, Rahmad Retna Astuti Kuswardani Risko Liza Robby Darwis Sembiring, Arnes Setyadi, Rahmat Arief Shidqi, Sultan Siregar, Rosyidah Siti Sundari Sri Eka Riyani Harahap Sultan Shidqi Sumi Khairani Suriati Suriati Suriati Suriati Suriati, Suriati Suswati suswati suswati Syah, Rahmad B.Y Tanjung, Rino Nurcahyo Fauzi Tengku Mhd Diansyah Tengku Mohd Diansyah, Tengku Mohd Ulfa Sahira Winanda, Icha Yasir, Amru Yessi Fitri Annisah Lubis Zuhanda, M. Khahfi