This study compares the effectiveness of the Support Vector Machine (SVM) and Naïve Bayes algorithms in classifying user sentiment regarding the BRImo application. User reviews were obtained from the Google Play Store platform and underwent a text preprocessing stage to clean and prepare the data. Subsequently, the SVM and Naïve Bayes algorithms were applied for sentiment analysis, using evaluation metrics such as accuracy, precision, recall, and F1-score. The results show that SVM achieved a training accuracy of 95.67% and a testing accuracy of 83.11%, with its best performance on positive sentiment (precision 92.26%, recall 91.79%, F1-score 92.02%) and moderate performance on negative sentiment (precision 62.81%, recall 62.81%, F1-score 62.81%). Meanwhile, Naïve Bayes recorded a training accuracy of 95.23% and a testing accuracy of 82.77%, with its highest performance on positive sentiment (precision 90.12%, recall 93.38%, F1-score 91.72%) but lower performance on negative sentiment (precision 65.07%, recall 60.06%, F1-score 62.46%). In terms of sentiment distribution, SVM was more effective in handling sentiment variations, particularly in detecting negative and neutral sentiments. These findings indicate that SVM outperforms Naïve Bayes in sentiment analysis of user reviews for the BRImo application.