Claim Missing Document
Check
Articles

Modeling Technology Acceptance for Agribusiness Education and Practices in East Java Aditiawan, Firza Prima; Fauzi, Akhmad; Mubarokah; Susrama, I Gede
Jurnal Penelitian Pendidikan IPA Vol 11 No 9 (2025): September
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v11i9.12511

Abstract

This study develops and validates a model for understanding technology acceptance and use in the agribusiness sector of East Java, Indonesia, using the Unified Theory of Acceptance and Use of Technology (UTAUT) as the foundation. The research analyzed Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Behavioral Intention, Use Behavior, Techno Skepticism, and Local Wisdom with data from 207 farmers in Pasuruan Regency, applying PLS-SEM. Results showed that Performance Expectancy and Effort Expectancy were the strongest predictors of Behavioral Intention, while Local Wisdom significantly moderated the relationship between intention and use. Techno Skepticism had a negative effect on intention. The extended UTAUT model thus provides a context-specific framework for agribusiness in developing countries. These findings offer practical implications for education, training, and agricultural policy by aligning digital innovation with local socio-cultural realities.
Peningkatan Ekonomi Digital pada Usaha Kerajinan Kulit melalui Optimalisasi Teknologi Informasi Sari, Anggraini Puspita; Widoretno, Astrini Aning; Aditiawan, Firza Prima; Rizki, Agung Mustika
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 6 No. 1.1 (2024): Jurnal Pengabdian kepada Masyarakat Nusantara (JPkMN) SPECIAL ISSUE
Publisher : Lembaga Dongan Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Usaha Mikro, Kecil, dan Menengah (UMKM) memiliki peran strategis dalam perekonomian Indonesia, baik sebagai penyedia lapangan kerja maupun sebagai kontributor terhadap Produk Domestik Bruto (PDB). Digitalisasi ekonomi menjadi salah satu strategi utama untuk meningkatkan daya saing, efisiensi operasional, dan akses pasar bagi UMKM, khususnya dalam sektor kerajinan kulit. Mitra kegiatan pengabdian kepada masyarakat ini adalah Prima Semesta Alam, sebuah UMKM di sektor kerajinan kulit yang berlokasi di Gunung Anyar, Surabaya. Kegiatan ini bertujuan untuk meningkatkan kapasitas daya saing dan akselerasi transformasi digital ekonomi mitra usaha. Pelaku UMKM di sektor ini menghadapi berbagai tantangan, termasuk keterbatasan dalam pemanfaatan teknologi digital untuk pemasaran dan penjualan produk secara online. Tim pengabdian dari Universitas Pembangunan Nasional Veteran Jawa Timur (UPNVJT) berkolaborasi antara program studi Informatika dan Akuntansi untuk melaksanakan pelatihan dan pendampingan komprehensif. Program ini mencakup penggunaan platform digital, penerapan strategi pemasaran berbasis data, dan optimalisasi media sosial untuk memperluas jangkauan pasar. Hasil dari kegiatan ini menunjukkan peningkatan signifikan dalam pemahaman pelaku usaha mengenai teknologi informasi, penguasaan platform digital untuk e-commerce, serta potensi peningkatan penjualan hingga 25% melalui adopsi strategi pemasaran digital. Hal ini mengindikasikan bahwa integrasi teknologi digital dapat menjadi katalisator bagi pertumbuhan ekonomi berkelanjutan di sektor UMKM, khususnya dalam menghadapi tantangan era industri 4.0.
Prediksi Gangguan Kesehatan Mental pada Kalangan Mahasiswa Menggunakan Metode Pseudo-Labeling dan Algoritma Regresi Logistik Sari, Anggraini Puspita; Prasetya, Dwi Arman; Aditiawan, Firza Prima; Al Haromainy, Muhammad Muharrom
TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi Vol 4 No 2(SEMNASTIK) (2024): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akunt
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/tamika.Vol4No2(SEMNASTIK).pp40-48

Abstract

Mental illness is a health condition that alters a person's thoughts, feelings, or behaviors, leading to distress and difficulty in maintaining a normal life. Mental health issues should not be taken lightly due to the challenges associated with diagnosis. Many students tend to experience mental health problems at various stages of their education, from diploma programs to doctoral studies. This situation becomes more critical as students approach the end of their studies and anticipate future prospects. This article explores the mental health status of students through symptoms, using logistic regression methods for prediction based on the dataset used. In this study, two types of data are employed: labeled dataset and unlabeled dataset, which are combined to create a semi-supervised learning approach. Labeled dataset is classified using a logistic regression algorithm, while unlabeled dataset employs the pseudo-labeling method. The analysis and modeling of the dataset indicate that the comparison between labeled and unlabeled dataset can significantly affect accuracy and processing time. Furthermore, the use of the pseudo-labeling method with the logistic regression algorithm is well-suited for the mental health case study, achieving an accuracy of 98% with a labeled to unlabeled dataset ratio of 1:2.
BLACK BOX TESTING WITH THE EQUIVALENCE PARTITIONING AND CAUSE EFFECT GRAPH METHOD IN ARCHIVE INFORMATION SYSTEM Ismiati, Suci; Aditiawan, Firza Prima; Nurlaili, Afina Lina
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 4 (2024): JUTIF Volume 5, Number 4, August 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.4.1944

Abstract

The Wijaya Putra University Archives Information System is a website-based information system used by Wijaya Putra University teaching staff as a digital archive storage medium. Several users mentioned that there were errors in the system, such as login problems, data access problems, and no file delivery notifications, so testing was needed to find functional errors in the system so that repairs could be made. Testing was carried out using the Black Box method with Equivalence Partitioning and Cause Effect Graph techniques. The use of Equivalence Partitioning is used to divide data input into each form, and each form input will be tested and grouped based on its function, whether it is appropriate or not appropriate. Meanwhile, the Cause Effect Graph is used to find out whether the test results obtained from the Equivalence Partitioning process are in accordance with the relationship between cause (input) and effect (output) expected in the system. Based on the research conducted, the final results show that out of a total of 58 test cases, there were 50 appropriate test cases and 8 inappropriate test cases, resulting in an effectiveness value of 87.67%. With this value, the Wijaya Putra University Archives Information System is running according to its function, but still needs to be repaired and further developed for functions that still have errors.
Logistic Regression Classification with TF-IDF and FastText for Sentiment Analysis of LinkedIn Reviews Wardana, Nabila Sya’bani; Aditiawan, Firza Prima; Sari, Anggraini Puspita
VISA: Journal of Vision and Ideas Vol. 4 No. 3 (2024): VISA: Journal of Vision and Ideas
Publisher : IAI Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/visa.v4i3.2835

Abstract

Social media and professional networking platforms like LinkedIn have become crucial platforms for individuals to interact, share information, and build professional networks. Despite the significant benefits LinkedIn has provided to its users, there are still some limitations such as account restriction ambiguity, synchronization issues, and the emergence of spam and irrelevant content. Therefore, it is important to understand users' responses to the application. Previous research has shown that sentiment analysis can be an effective tool in understanding user reviews of applications. This study will continue previous research by analyzing the sentiment of user reviews of the LinkedIn application using the Logistic Regression method, taking into account the use of TF-IDF Feature Extraction and FastText Feature Expansion. Logistic Regression was chosen because it is effective in handling binary sentiment classification problems and has relatively high training speed. This method will be tested to address data imbalance and improve classification performance. This research demonstrates that this approach can provide optimal results in measuring accuracy, recall, precision, and F-Score. The research findings will provide valuable insights for LinkedIn application developers to enhance service quality. Based on the evaluation metrics, it can be observed that the first testing scheme with default parameters achieved an accuracy of 91.86%, a precision of 94.05%, a recall of 91.99%, and an F1-Score of 93.01%. The percentage values obtained already surpass 90%.
PERANCANGAN SISTEM KLINIK KESEHATAN DAN INVENTORI OBAT DI KLINIK KESEHATAN GRATIS AL-MUHAJIRIN Winata, Chycik Ayu; Mumpuni, Retno; Aditiawan, Firza Prima
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 3S1 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3S1.5242

Abstract

Penelitian ini bertujuan untuk merancang dan mengembangkan sistem klinik kesehatan dan inventori obat di Klinik Kesehatan Gratis Al-Muhajirin. Sistem ini dirancang untuk meningkatkan efisiensi operasional klinik dengan memudahkan pengelolaan data pasien, kunjungan, dan stok obat. Menggunakan pendekatan Model-View-Controller (MVC), sistem ini diimplementasikan dengan fitur utama yang meliputi manajemen data pasien, pencatatan kunjungan, dan pengelolaan inventori obat. Uji coba sistem menunjukkan bahwa penerapan sistem ini dapat mengurangi kesalahan pengelolaan data dan meningkatkan efisiensi klinik secara keseluruhan. Hasil penelitian ini penting karena memberikan solusi praktis bagi klinik yang memiliki keterbatasan sumber daya dalam pengelolaan operasional harian.
Co-Authors Achmad Junaidi Adzanil Rachmadhi Putra Agil Sakinah, Fenti Agung Mustika Rizki Agung Mustika Rizki Agung Mustika Rizki, Agung Mustika Akbar, Fawwaz Ali Akhmad Fauzi Al Fathoni, Hanif Alit, Ronggo Andreas Nugroho Sihananto Anggraini Puspita Sari Anggriawan, Teddy Prima Aniisah Eka Rahmawati Ardilla, Aufa ASHARI, FAISAL Boy Diego Lumwartono Davila Erdianita Dimas Putra Andaru Dwi Arman Prasetya Dwi Rahma Putri, Septiani Eka Prakarsa Mandyartha Eka Zuni Selviana EKO WAHYUDI Eko Wahyudi Eriyansyah Yusuf Suwandana Fetty Tri Anggraeny Firmansyah Firdaus Anhar Gusti Eka Yuliastuti Hamidah Hendrarini Hardianto, Eragradiansyah Henni Endah Wahanani Herdi Rofaldi Hidra Amnur I GEDE SUSRAMA Idhom, Mohammad Iriansah, Ogy Rachmad Ismiati, Suci Khairil Amin, Mohammad Lina Nurlaili, Afina Made Hanindia Prami Swari Mafaza, Rima Muttaqina Mahanani, Anajeng Esri Edhi Maulana, Hendra Mubarokah Muhammad Eko Prasetyo Muhammad Izdihar Alwin Muhammad Izdihar Alwin Muhammad Muharrom Al Haromainy Mustika Rizki, Agung Muttaqin, Faisal Muttaqin, Faisal Nobrian, Ikhsan Nugroho Gultom, Wahyu Nugroho Sihananto, Andreas Nur Aini Ersanti Nurlaili, Afina Lina Pradana Ariando, Aldo Pratama Wirya Atmaja Puspaningrum, Eva Y Rahmawati, Aniisah Eka Raviy Bayu Setiaji Retno Mumpuni Rizqulloh Zain, Muhammad Dhiya'ulhaq Samdono, Arif Saputra, Wahyu Syaifullah Jauharis Shabika Aqmarina, Azzuraa Soedarto, Teguh Suprapto, Claudia Millennia Vita Via, Yisti Wardana, Nabila Sya’bani Wicaksa Putra Pribadi, Achareeya Widoretno, Astrini Aning Winata, Chycik Ayu Wirya Atmaja, Pratama Yunizar, Sri Fatmawati