Claim Missing Document
Check
Articles

Logistic Regression Classification with TF-IDF and FastText for Sentiment Analysis of LinkedIn Reviews Nabila Sya’bani Wardana; Firza Prima Aditiawan; Anggraini Puspita Sari
VISA: Journal of Vision and Ideas Vol. 4 No. 3 (2024): VISA: Journal of Vision and Ideas
Publisher : IAI Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/visa.v4i3.2835

Abstract

Social media and professional networking platforms like LinkedIn have become crucial platforms for individuals to interact, share information, and build professional networks. Despite the significant benefits LinkedIn has provided to its users, there are still some limitations such as account restriction ambiguity, synchronization issues, and the emergence of spam and irrelevant content. Therefore, it is important to understand users' responses to the application. Previous research has shown that sentiment analysis can be an effective tool in understanding user reviews of applications. This study will continue previous research by analyzing the sentiment of user reviews of the LinkedIn application using the Logistic Regression method, taking into account the use of TF-IDF Feature Extraction and FastText Feature Expansion. Logistic Regression was chosen because it is effective in handling binary sentiment classification problems and has relatively high training speed. This method will be tested to address data imbalance and improve classification performance. This research demonstrates that this approach can provide optimal results in measuring accuracy, recall, precision, and F-Score. The research findings will provide valuable insights for LinkedIn application developers to enhance service quality. Based on the evaluation metrics, it can be observed that the first testing scheme with default parameters achieved an accuracy of 91.86%, a precision of 94.05%, a recall of 91.99%, and an F1-Score of 93.01%. The percentage values obtained already surpass 90%.
Website Creation as Means of Digitizing MSME Products for School Uniforms at Agung's Collection Eko Wahyudi; Anggraini Puspita Sari; Firza Prima Aditiawan
Nusantara Science and Technology Proceedings 7st International Seminar of Research Month 2022
Publisher : Future Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/nstp.2023.3365

Abstract

The development of digital technology provides opportunities for micro, small, and medium enterprises (MSMEs) to utilize online media in marketing strategies that were initially only conventional in the hope of increasing the income of MSME actors. Agung's Collection is an MSME actor who was selected as a partner for community service activities financed by the East Java "Veterans" National Development University. The partner business was built in the 90s and was led directly by the business owner, namely: Mr. Mustik. Agung's Collection is a special partner in producing school uniforms located in Sraturejo Village, Baureno sub- districts, Bojonegoro districts, Indonesia. The stages of community service activities that have been carried out are conducting partner location surveys, outreach to partners, problem analysis, product digitization implementation, and intellectual property rights (IPR) management. The training and assistance phase of the results of product digitization will be carried out after reporting accountability to the Research and Community Service Institute (LPPM), Universitas Pembangunan Nasional “Veteran Jawa Timur, Surabaya-Indonesia. This community service activity is in the form of digitizing partner products to expand marketing reach, increase sales results, maintain product quality, and increase productivity so that it has an impact on increasing partner income significantly which is expected to improve the welfare of partner employees. The results of digitizing partner products carried out by the proposing team consist of a website, tag, and logo. Design of tag, logo, and website based on the agreement between the proposer team and partners. Tag and logo are designed based on the characteristics or uniqueness of partner products so that they are different from other school uniform manufacturers. On the website, the results of Agung's Collection logo design are already listed. The website contains a home, about us, galleries, products, and contacts.
PERANCANGAN SISTEM KLINIK KESEHATAN DAN INVENTORI OBAT DI KLINIK KESEHATAN GRATIS AL-MUHAJIRIN Winata, Chycik Ayu; Mumpuni, Retno; Aditiawan, Firza Prima
Jurnal Informatika dan Teknik Elektro Terapan Vol 12, No 3S1 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3S1.5242

Abstract

Penelitian ini bertujuan untuk merancang dan mengembangkan sistem klinik kesehatan dan inventori obat di Klinik Kesehatan Gratis Al-Muhajirin. Sistem ini dirancang untuk meningkatkan efisiensi operasional klinik dengan memudahkan pengelolaan data pasien, kunjungan, dan stok obat. Menggunakan pendekatan Model-View-Controller (MVC), sistem ini diimplementasikan dengan fitur utama yang meliputi manajemen data pasien, pencatatan kunjungan, dan pengelolaan inventori obat. Uji coba sistem menunjukkan bahwa penerapan sistem ini dapat mengurangi kesalahan pengelolaan data dan meningkatkan efisiensi klinik secara keseluruhan. Hasil penelitian ini penting karena memberikan solusi praktis bagi klinik yang memiliki keterbatasan sumber daya dalam pengelolaan operasional harian.
Prediksi Gangguan Kesehatan Mental pada Kalangan Mahasiswa Menggunakan Metode Pseudo-Labeling dan Algoritma Regresi Logistik Sari, Anggraini Puspita; Prasetya, Dwi Arman; Aditiawan, Firza Prima; Al Haromainy, Muhammad Muharrom
TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi Vol 4 No 2(SEMNASTIK) (2024): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akunt
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/tamika.Vol4No2(SEMNASTIK).pp40-48

Abstract

Mental illness is a health condition that alters a person's thoughts, feelings, or behaviors, leading to distress and difficulty in maintaining a normal life. Mental health issues should not be taken lightly due to the challenges associated with diagnosis. Many students tend to experience mental health problems at various stages of their education, from diploma programs to doctoral studies. This situation becomes more critical as students approach the end of their studies and anticipate future prospects. This article explores the mental health status of students through symptoms, using logistic regression methods for prediction based on the dataset used. In this study, two types of data are employed: labeled dataset and unlabeled dataset, which are combined to create a semi-supervised learning approach. Labeled dataset is classified using a logistic regression algorithm, while unlabeled dataset employs the pseudo-labeling method. The analysis and modeling of the dataset indicate that the comparison between labeled and unlabeled dataset can significantly affect accuracy and processing time. Furthermore, the use of the pseudo-labeling method with the logistic regression algorithm is well-suited for the mental health case study, achieving an accuracy of 98% with a labeled to unlabeled dataset ratio of 1:2.
PENERAPAN DATA MINING UNTUK PREDIKSI HASIL PANEN BUDIDAYA PERIKANAN DARI MITRA PANEN MENGGUNAKAN ALGORITMA SUPPORT VECTOR REGRESSION Suprapto, Claudia Millennia; Saputra, Wahyu Syaifullah Jauharis; Aditiawan, Firza Prima
J-Icon : Jurnal Komputer dan Informatika Vol 12 No 2 (2024): Oktober 2024
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jicon.v12i2.13187

Abstract

PT. Adma Digital Solusi is a company that serves as a harvest partner for cultivators in the fields of agriculture, animal husbandry and fisheries which is used for planning and controlling supply chain results. Planning and controlling PT fishery supply chain results. Adma Digital Sousi in the digital era needs to utilize various technologies and information systems. This aims to ensure that planning and controlling fish resources fulfill aspects of effectiveness and efficiency in decision making. In this research, a machine learning method will be implemented using the Support Vector Regression (SVR) algorithm to predict the harvest results of PT's fishery cultivation partners. Adma Digital Solutions. The SVR algorithm is a theory used to solve a regression classification problem using a Support Vector Machine (SVM). The SVR forecasting process uses the SVR() model by filling in the parameters, namely the kernel using polynomials, C is filled with the value 100, gamma is filled with auto, degree is filled with the value three, epsilon is filled with the value 0.1, and finally coef0 is filled with the value one. Then, using the fit function to train the model using x train and y train data to produce a MAPE error rate value of 0.12865018182566176 and an R2 value of 0.9998831470091238 with very good and accurate prediction capabilities. By knowing the estimated harvest results of aquaculture, the benefits obtained by harvest partners are adjusting production and marketing strategies to maximize profits. And can help harvest partners in managing risks, because they can prepare themselves well for situations where harvest results do not match estimates.
Sistem Pakar untuk Mendeteksi Awal Gangguan Kecemasan pada Remaja (Anxiety Disorder) Menggunakan Metode Forward Chaining Eriyansyah Yusuf Suwandana; Eka Prakarsa Mandyartha; Firza Prima Aditiawan
Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika Vol. 3 No. 2 (2025): Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/merkurius.v3i2.705

Abstract

Health is important for every human being. Health, education and income of each individual are three important factors that greatly influence the quality of human resources. Anxiety disorders are a significant mental health problem and can affect an individual's quality of life. Early detection of anxiety disorders is important to provide appropriate intervention and prevent the development of more serious conditions. This research aims to develop an expert system that is able to detect anxiety disorders based on symptoms reported by penggunas. This system uses a forward chaining method and a knowledge base compiled from medical literature and consultations with mental health experts. Several stages of system creation include collecting data on symptoms of anxiety disorders, preparing a knowledge base, implementing a forward chaining inference algorithm, and kuatating the system using test data and expert consultation. The expert system developed in this research is able to provide accurate initial information regarding the symptoms of anxiety disorders in adolescents based on the symptoms input by the pengguna. By utilizing a knowledge base and appropriate diagnostic rules, the system can identify key symptoms that indicate the presence of an anxiety disorder.
Peningkatan Ekonomi Digital pada Usaha Kerajinan Kulit melalui Optimalisasi Teknologi Informasi Anggraini Puspita Sari; Astrini Aning Widoretno; Firza Prima Aditiawan; Agung Mustika Rizki
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 6 No. 1.1 (2024): Jurnal Pengabdian kepada Masyarakat Nusantara (JPkMN) SPECIAL ISSUE
Publisher : Cv. Utility Project Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Usaha Mikro, Kecil, dan Menengah (UMKM) memiliki peran strategis dalam perekonomian Indonesia, baik sebagai penyedia lapangan kerja maupun sebagai kontributor terhadap Produk Domestik Bruto (PDB). Digitalisasi ekonomi menjadi salah satu strategi utama untuk meningkatkan daya saing, efisiensi operasional, dan akses pasar bagi UMKM, khususnya dalam sektor kerajinan kulit. Mitra kegiatan pengabdian kepada masyarakat ini adalah Prima Semesta Alam, sebuah UMKM di sektor kerajinan kulit yang berlokasi di Gunung Anyar, Surabaya. Kegiatan ini bertujuan untuk meningkatkan kapasitas daya saing dan akselerasi transformasi digital ekonomi mitra usaha. Pelaku UMKM di sektor ini menghadapi berbagai tantangan, termasuk keterbatasan dalam pemanfaatan teknologi digital untuk pemasaran dan penjualan produk secara online. Tim pengabdian dari Universitas Pembangunan Nasional Veteran Jawa Timur (UPNVJT) berkolaborasi antara program studi Informatika dan Akuntansi untuk melaksanakan pelatihan dan pendampingan komprehensif. Program ini mencakup penggunaan platform digital, penerapan strategi pemasaran berbasis data, dan optimalisasi media sosial untuk memperluas jangkauan pasar. Hasil dari kegiatan ini menunjukkan peningkatan signifikan dalam pemahaman pelaku usaha mengenai teknologi informasi, penguasaan platform digital untuk e-commerce, serta potensi peningkatan penjualan hingga 25% melalui adopsi strategi pemasaran digital. Hal ini mengindikasikan bahwa integrasi teknologi digital dapat menjadi katalisator bagi pertumbuhan ekonomi berkelanjutan di sektor UMKM, khususnya dalam menghadapi tantangan era industri 4.0.
Pemanfaatan Model ResNet50 dan SVM untuk Klasifikasi Penyakit Daun Tebu Yunizar, Sri Fatmawati; Sari, Anggraini Puspita; Aditiawan, Firza Prima
CICES (Cyberpreneurship Innovative and Creative Exact and Social Science) Vol 11 No 1 (2025): CICES
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/cices.v11i1.3506

Abstract

Indonesia is an agrarian country with an economy that heavily relies on the agricultural sector, including the sugarcane plantation sub-sector for sugar production. Although domestic sugar production continues to increase, the demand for sugar consumption also grows, leading to dependency on imports and fluctuating sugar prices in the domestic market. Therefore, efforts to maintain and enhance the productivity of sugarcane crops are crucial. One of the main challenges in sugarcane cultivation is the attack of pests and diseases such as yellow disease, redrot, mosaic, and rust, which often affect sugarcane plants and reduce their productivity. These diseases must be detected promptly as they significantly impact the quality and quantity of the sugarcane to be harvested. However, manual identification processes are prone to human error and are inefficient for large-scale plantations. To address this, machine learning technology using Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) was employed. This approach uses CNN for feature extraction and SVM for classification. Through a series of experiments, the study shows that the CNN and SVM models can achieve high accuracy of 90.32% with a computational time of 181.53 seconds.
Pendampingan Digitalisasi Usaha Koperasi Unit Desa Sedya Mulya Bojonegoro Berbasis Web Soedarto, Teguh; Aditiawan, Firza Prima; Yuliastuti, Gusti Eka
JPP IPTEK (Jurnal Pengabdian dan Penerapan IPTEK) Vol 6, No 2 (2022)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jpp-iptek.2022.v6i2.3411

Abstract

Kabupaten Bojonegoro juga dikenal dengan potensi lahan pertanian yang cukup luas sehingga Kabupaten Bojonegoro menjadi lumbung pangan untuk menjaga ketahanan pangan nasional. Dengan tingginya produksi beras di Kabupaten Bojonegoro, tentunya harus diimbangi dengan pengelolaan yang baik. Dalam hal ini, pemasaran beras masih menggunakan cara konvensional, yakni petani menjual hasil pertanian ke perantara. Cara konvensional tersebut memiliki permasalahan, yakni kurang meluasnya penyebaran informasi, termasuk pemasaran produk, sehingga perlu dilakukan upaya agar hasil produksi pertanian lebih menjangkau pasar yang luas. Salah satu upaya yang dilakukan adalah melakukan digitalisasi usaha Koperasi Unit Desa (KUD) Sedya Mulya. Digitalisasi yang dimaksud ialah mengubah metode pemasaran konvensional menjadi digital berbasis internet berupa website. Tujuan dari dilakukannya digitalisasi itu yakni untuk meningkatkan daya saing pemasaran produk, kemasan, serta promosi.
PENGEMBANGAN GIM EDUKASI SEBAGAI MEDIA PELATIHAN PENCEGAHAN DAN PENANGGULANGAN KEBAKARAN BERBASIS AUGMENTED REALITY DAN ESCAPE ROOM Pradana Ariando, Aldo; Wirya Atmaja, Pratama; Prima Aditiawan, Firza
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 3 (2025): JATI Vol. 9 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i3.13590

Abstract

Kebakaran merupakan bencana yang disebabkan oleh titik api yang tidak terkendali. Risiko bencana ini sangat tinggi terjadi di kawasan industri, terutama karena banyaknya bahan mudah terbakar yang dapat mempercepat penyebaran api dan meningkatkan potensi kerugian besar. Meskipun pelatihan tanggap darurat kebakaran wajib dilakukan, namun pekerja ditemukan kurang memperhatikan skenario pelatihan. Untuk mengatasi permasalahan tersebut, penelitian ini bertujuan untuk mengembangkan gim edukasi berbasis Augmented Reality dan konsep escape room sebagai media pembelajaran interaktif untuk meningkatkan pemahaman dalam menangani kebakaran. Metode yang digunakan dalam pengembangan gim ini adalah Multimedia Development Life Cycle (MDLC) yang mencakup enam tahapan utama, yaitu Concept, Design, Material collecting, Assembly, Testing, dan Distribution. Pengujian efektivitas menggunakan GUESS-18 dengan skala Likert 7-point menunjukkan rata-rata persentase 75%, menandakan gim ini efektif dalam menyampaikan materi pembelajaran, serta memungkinkan pemain dapat mengekspresikan kreativitas dan imajinasinya selama bermain.
Co-Authors Achmad Junaidi Adzanil Rachmadhi Putra Afina Lina Nurlaili Agil Sakinah, Fenti Agung Mustika Rizki Agung Mustika Rizki Agung Mustika Rizki, Agung Mustika Akbar, Fawwaz Ali Akhmad Fauzi Al Fathoni, Hanif Alit, Ronggo Andreas Nugroho Sihananto Anggraini Puspita Sari Anggriawan, Teddy Prima Aniisah Eka Rahmawati Ardilla, Aufa ASHARI, FAISAL Astrini Aning Widoretno Boy Diego Lumwartono Davila Erdianita Dimas Putra Andaru Dwi Arman Prasetya Dwi Rahma Putri, Septiani Eka Prakarsa Mandyartha Eka Zuni Selviana EKO WAHYUDI Eko Wahyudi Eriyansyah Yusuf Suwandana Fetty Tri Anggraeny Firmansyah Firdaus Anhar Gusti Eka Yuliastuti Hamidah Hendrarini Hardianto, Eragradiansyah Henni Endah Wahanani Herdi Rofaldi Hidra Amnur I GEDE SUSRAMA Idhom, Mohammad Iriansah, Ogy Rachmad Khairil Amin, Mohammad Lina Nurlaili, Afina Made Hanindia Prami Swari Mafaza, Rima Muttaqina Mahanani, Anajeng Esri Edhi Maulana, Hendra Mubarokah Muhammad Eko Prasetyo Muhammad Izdihar Alwin Muhammad Izdihar Alwin Muhammad Muharrom Al Haromainy Mustika Rizki, Agung Muttaqin, Faisal Muttaqin, Faisal Nabila Sya’bani Wardana Nobrian, Ikhsan Nugroho Gultom, Wahyu Nugroho Sihananto, Andreas Nur Aini Ersanti Nurlaili, Afina Lina Pradana Ariando, Aldo Pratama Wirya Atmaja Puspaningrum, Eva Y Rahmawati, Aniisah Eka Raviy Bayu Setiaji Retno Mumpuni Rizqulloh Zain, Muhammad Dhiya'ulhaq Samdono, Arif Saputra, Wahyu Syaifullah Jauharis Shabika Aqmarina, Azzuraa Soedarto, Teguh Suci Ismiati Suprapto, Claudia Millennia Vita Via, Yisti Wicaksa Putra Pribadi, Achareeya Winata, Chycik Ayu Wirya Atmaja, Pratama Yunizar, Sri Fatmawati