Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Research in the Mathematical and Natural Sciences

Penjadwalan Mata Pelajaran Menggunakan Metode Integer Linear Programming di SMA Negeri 1 Tilango Djafar, Fitria; Katili, Muhammad Rifai; Nasib, Salmun K; Nurwan, Nurwan; Wungguli, Djihad; Arsal, Armayani
Research in the Mathematical and Natural Sciences Vol. 4 No. 1 (2025): November 2024-April 2025
Publisher : Scimadly Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55657/rmns.v4i1.200

Abstract

Penjadwalan mata pelajaran secara optimal sangat penting untuk memastikan kelancaran kegiatan belajar dan mengajar. Di SMA Negeri 1 Tilango, penjadwalan yang dilakukan secara manual oleh pihak kurikulum cenderung memakan waktu yang cukup lama, sehingga sering terjadi bentrok antar mata pelajaran pada waktu yang bersamaan. Proses penjadwalan manual ini cukup sulit karena harus memenuhi semua aturan dan kebijakan sekolah yang berlaku. Untuk mengatasi tantangan tersebut, digunakan metode integer linear programming (ILP) yang dapat membantu menyusun jadwal mata pelajaran secara lebih efisien dan terstruktur. Penelitian ini bertujuan untuk menghasilkan jadwal mata pelajaran yang ideal dengan meminimalkan total bobot pelajaran, hari, dan waktu menggunakan metode ILP. Penyusunan jadwal diselesaikan dengan bantuan software Lingo 18.0. Hasil penelitian menunjukkan bahwa jadwal yang dihasilkan dengan metode ILP lebih optimal dibandingkan dengan penjadwalan manual, karena mampu memenuhi semua batasan dan kendala yang telah ditentukan oleh sekolah..
Pengelompokan Data Stunting di Indonesia Menggunakan Metode X-Means dan Agglomerative Hierarchical Clustering Wahab, Nur Dhea; Nasib, Salmun K.; Nurwan; Wungguli, Djihad; Yahya, Nisky Imansyah
Research in the Mathematical and Natural Sciences Vol. 4 No. 1 (2025): November 2024-April 2025
Publisher : Scimadly Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55657/rmns.v4i1.201

Abstract

Stunting is one of the serious problems that threaten the quality of human resources in Indonesia. This study aims to analyze the patterns and characteristics of stunting in Indonesia by applying the X-Means clustering method and Agglomerative Hierarchical Clustering (AHC). The X-Means method is used to determine the optimal number of clusters automatically by utilizing the Bayesian Information Criterion (BIC), while AHC forms a dendrogram to understand the multilevel structure of the clusters formed. Based on the analysis, the X-Means method produces three optimal clusters with the smallest BIC value of 651.9475, where cluster 1 consists of 17 provinces, cluster 2 includes 12 provinces, and cluster 3 includes 5 provinces. The AHC method with the Single Linkage approach also produced three optimal clusters, with cluster 1 covering 32 provinces, cluster 2 consisting of 1 province (West Nusa Tenggara), and cluster 3 covering 1 province (East Nusa Tenggara), as well as the highest Silhouette Index value of 0.28. The results show that both methods provide a comprehensive picture of stunting patterns in Indonesia, which can be used as a basis for designing more targeted intervention programs according to the characteristics of each cluster. This data-driven strategy is expected to increase policy effectiveness in reducing stunting in Indonesia.