Claim Missing Document
Check
Articles

IMPLEMENTASI ITERATIVE DICHOTOMISER 3 MENGGUNAKAN MUTUAL INFORMATION DALAM MEMPREDIKSI PRODUKSI SAYURAN Adhazi, Tri; Noviani, Evi; Huda, Nur’ainul Miftahul
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 14, No 1 (2025): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v14i1.91696

Abstract

Pertanian merupakan sektor penting dalam perekonomian Indonesia, dengan produksi sayuran sebagai bagian utama pola konsumsi masyarakat. Fluktuasi produksi sayuran menjadi tantangan bagi petani dan pengambil kebijakan, karena dapat menyebabkan ketidakseimbangan pasokan. Penelitian ini menerapkan algoritma Iterative Dichotomiser 3 (ID3) untuk memprediksi produksi sayuran di Kalimantan Barat berdasarkan data 2020–2022. Data produksi empat sayuran tertinggi (mentimun, kacang panjang, terung, dan cabe rawit) dianalisis dengan mutual information untuk seleksi fitur. Model ID3 diuji menggunakan pembagian data 70% pelatihan dan 30% pengujian, menghasilkan akurasi 90,9%. Hasil analisis menunjukkan bahwa kacang panjang memiliki pengaruh terbesar terhadap fluktuasi produksi sayuran lain, dengan nilai mutual information 1,886. Berdasarkan nilai akurasi yang diperoleh, dapat disimpulkan bahwa keakuratan algoritma ID3 tergolong sangat baik dalam prediksi produksi sayuran. Kata Kunci: prediksi produksi sayuran, data mining, pohon keputusan, seleksi fitur, fluktuasi produksi 
PENGELOMPOKAN TINGKAT KESEJAHTERAAN MASYARAKAT DI KALIMANTAN BARAT MENGGUNAKAN ALGORITMA AGGLOMERATIVE HIERARCHICAL CLUSTERING Widiastuti, Ika; Noviani, Evi; Fran, Fransiskus
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 14, No 1 (2025): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v14i1.91827

Abstract

Kemakmuran masyarakat terus menjadi prioritas utama dalam proses pembangunan di Indonesia, termasuk di Provinsi Kalimantan Barat. Pengelompokan kesejahteraan di Kalimantan Barat bertujuan untuk melakukan pengelompokan kabupaten/kota Provinsi Kalimantan Barat berdasarkan tingkat kesejahteraan masyarakat sehingga pemerintah daerah bisa menentukan wilayah mana yang menjadi prioritas pembangunan ekonomi. Dalam peneliian ini metode yang digunakan adalah agglomerative hierarchical clustering dengan empat algoritma, yaitu single linkage, complete linkage, average linkage, dan ward linkage. Indikator yang digunakan mencakup pendapatan per kapita, Indeks Pembangunan Manusia, dan persentase penduduk miskin. Hasil pengelompokan karakteristik tingkat kesejahteraan masyarakat menggunakan metode Agglomerative Hierarchical Clustering menunjukkan bahwa algoritma terbaik adalah average linkage, dengan nilai korelasi chopenetic yaitu 0,936. Nilai yang mendekati satu menunjukkan bahwa hasil klasterisasi yang diperoleh memiliki kualitas yang baik. Hasil yang diperoleh, dapat disimpulkan bahwa taraf kesejahteraan di Provinsi Kalimantan Barat dengan dua cluster menggunakan metode Average Linkage. Cluster ke-1 kabupaten/kota tingkat kesejahteraan yang tinggi yaitu Pontianak dan Singkawang. Cluster ke-2 kabupaten/kota tingkat kesejahteraan yang rendah yaitu Sambas, Bengkayang, Mempawah, Sanggau, Kubu Raya, Landak, Sintang, Sekadau, Kapuas Hulu, Melawi, Kayong Utara dan Ketapang. Kata Kunci:  Average Linkage, clustering, kesejahteraan masyarakat.
Enhancing students' conceptual understanding of trigonometric functions through geogebra-based learning Juandi, Juandi; Sugiatno, Sugiatno; Noviani, Evi
Al-Jabar: Jurnal Pendidikan Matematika Vol 16 No 1 (2025): Al-Jabar: Jurnal Pendidikan Matematika
Publisher : Universitas Islam Raden Intan Lampung, INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ajpm.v16i1.25653

Abstract

Purpose: This study explores how students construct basic trigonometric function definitions using GeoGebra, examines their engagement, and identifies the challenges they face. The research follows a constructivist approach, emphasizing active learning through technology to improve students’ understanding of mathematical concepts.Method: A pedagogical action research method was used, involving four stages: observation, planning, action, and reflection. The study was conducted with 31 Grade X science students from SMA Negeri 1 Sungai Kakap, selected through purposive sampling. Data were collected through observations, questionnaires, and interviews to assess the effectiveness of the GeoGebra-based learning approach.Findings: The results show that students successfully built definitions of basic trigonometric functions, achieving an average score of 95.24 percent, classified as "Very Good." Additionally, students responded positively to GeoGebra-based learning, with an average satisfaction score of 83.68 percent. However, some students faced technical difficulties, such as unstable internet connections and challenges in navigating the Geogebra application. Despite these issues, the approach proved effective in supporting interactive and engaging learning.Significance: This study highlights the benefits of using GeoGebra to enhance students’ understanding of trigonometric concepts through a constructivist learning approach. The findings suggest that improving infrastructure, providing training in technology use, and offering active teacher support can help maximize the impact of technology in mathematics education. These insights contribute to the ongoing development of digital learning strategies in secondary school mathematics.
The implementation of integral concepts in physics problem-solving by students with a conceptual blending framework approach Fitriah, Fitriah; Sugiatno, Sugiatno; Noviani, Evi
Indonesian Journal of Science and Mathematics Education Vol. 7 No. 1 (2024): Indonesian Journal of Science and Mathematics Education
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ijsme.v7i1.21681

Abstract

This research employed a qualitative descriptive approach to explore the application of integral concepts in solving physics problems with the conceptual blending framework. The sample of 26 students were categorized into four groups. The research investigated how different groups applied conceptual blending in addressing physics problems involving integrals. The findings revealed diverse understandings and approaches across the groups, with Group 4 exhibiting a more integrated understanding of physics and mathematics concepts. The study highlighted the effectiveness of conceptual blending in fostering a deeper comprehension of complex concepts in physics and mathematics, suggesting a potential pedagogical strategy to enhance students' problem-solving skills and theoretical understanding. This research contributes to the field by demonstrating the nuanced ways students engage with interdisciplinary concepts, offering insights for educators to refine teaching methodologies in integrating mathematics into physics education.
SOLUSI PERSAMAAN EMDEN-FOWLER ORDE DUA DENGAN MEMANFAATKAN MATRIKS OPERASIONAL DARI POLINOMIAL BERNSTEIN Yudhi, Yudhi; Noviani, Evi; Aljona, Sarah
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 2 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (526.111 KB) | DOI: 10.30598/barekengvol15iss2pp335-346

Abstract

Dalam penelitian ini, matriks operasional dari Polinomial Bernstein digunakan untuk mengaproksimasi solusi Persamaan Emden-Fowler orde dua. Untuk mencari solusi Persamaan Emden-Fowler digunakan matriks operasional integral dan matriks operasional diferensial dari Polinomial Bernstein. Karena Persamaan Emden-Fowler berorde dua, maka digunakan dalam matriks operasional dari Polinomial Bernstein. Berdasarkan hasil penelitian bahwa solusi Persamaan Emden Fowler dengan diperoleh galat yang lebih kecil daripada dengan , baik menggunakan matriks operasional integral maupun matriks operasional diferensial dari Polinomial Bernstein
FLUID FLOW MODELLING WITH FREE SURFACE Pratama, Anjeryan Sapta; Noviani, Evi; Yudhi, Yudhi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.971 KB) | DOI: 10.30598/barekengvol16iss4pp1147-1158

Abstract

Fluid is a substance that can flow in the form of a liquid or a gas. Based on the movement of the fluid is divided into static and dynamic fluids. This study discusses fluid dynamics, namely modelling fluid flow accompanied by a free surface and an obstacle in the fluid flow. Fluid modelling generally makes some basic assumptions into mathematical equations. The assumptions are incompressible, steady-state and irrotational. The steps to obtain a fluid flow model are using Newton’s second law, the law of conservation of mass, and the law of conservation of momentum to obtain the general Navier-Stokes equation, the designing the Euler free surface equation, the Bernoulli equation, then making a free surface representation and linearizing the wave equation so that it is obtained fluid flow model. The resulting mathematical model is a Laplace equation with boundary conditions in the fluid.
MODELING THE SPREAD OF COVID-19 DISEASE WITH TIME DELAY IN PONTIANAK CITY Fatonah, Fatma Arum; Noviani, Evi; Pasaribu, Meliana
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 2 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss2pp0903-0914

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a coronavirus originating from the city of Wuhan in 2019. This disease affects the respiratory system. The city of Pontianak has the highest population density in West Kalimantan. This density results in a higher spread of Covid-19. In this article, the spread of COVID-19 is formulated into a mathematical model, equilibrium points are sought, stability is analyzed, and a delay time is introduced to reduce the spread of COVID-19. The magnitude of the delay time given during quarantine complies with health protocols, which is between 2 – 14 days. This article aims to analyze the influence of the delay time in modeling the spread of Covid-19. The problem of COVID-19 spread is constructed into an SIQR model, with a sub-population of recovered individuals returning to the susceptible sub-population. The population is divided into four sub-populations: susceptible (S), Infected (I), Quarantined (Q), and Recovered (R). The parameters used include the natural birth rate ( ), the rate of susceptibility to infection ( ), the rate of infection under quarantine ( ), the recovery rate from infection ( ), the recovery rate from infection under quarantine ( ), the death rate from infection ( ), the death rate under quarantine ( ), the delay time from infection to quarantine process ( ), the natural death rate ( ), and the rate of recovered immunity returning to susceptibility ( ). The simulation results show that when the basic reproduction number is less than , the disease-free equilibrium is stable, and when the basic reproduction number is greater than , the endemic equilibrium point is stable. The addition of a time delay ( ) in the SIQR model affects the stability of the endemic equilibrium point but does not affect the stability of the disease-free equilibrium point.
PENGKLASTERAN PASIEN KANKER LEUKEMIA BERDASARKAN DATA EKSPRESI GEN DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Evi Noviani; Yoga Satria Putra
Limits: Journal of Mathematics and Its Applications Vol. 7 No. 2 (2010): Limits: Journal of Mathematics and Its Applications Volume 7 Nomor 2 Edisi Nove
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Informasi yang terkandung di dalam rangkaian molekular Deo- xyribonucleic acid (DNA) makhluk hidup dapat diketahui melalui teknologi microarray. Data microarray menyajikan data tingkat ekspresi gen yang umumnya berukuran besar. Satu sampel pada data microarray bisa memiliki ribuan atau puluhan ribu gen. Pada penelitian ini diolah data pasien kanker darah (leukemia) yang berukuran 500032dengan entri tak negatif. Data microarray pasien leukemia dapat diolah dengan menggunakan Dekomposisi Nilai Singular sedemikian sehingga sampel yang memiliki sifat yang sama dikelompokkan dalam satu kelompok. Dekomposisi Nilai Singular digunakan untuk mengelompokkan data dengan dua macam keragaman (bi-clustering), yaitu menggunakan nilai vektor singular kedua dan ketiga. Dari implementasi pada data, pasien kanker dapat dikelompokkan menjadi penyakit AML, dan ALL beserta sub tipe penyakit ALL, yakni ALL-T dan ALL-B.