Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : MIND (Multimedia Artificial Intelligent Networking Database) Journal

Evaluasi Algoritma Pembelajaran Terbimbing terhadap Dataset Penyakit Jantung yang telah Dilakukan Oversampling MASRURIYAH, ANIS FITRI NUR; NOVITA, HILDA YULIA; SUKMAWATI, CICI EMILIA; ARIF, SITI NOVIANTI NURAINI; RAMADHAN, ANGGA RAMDA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 8, No 2 (2023): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v8i2.242-253

Abstract

AbstrakPenyakit jantung mengalami peningkatan setiap tahunnya dan menjadi penyebab kematian tertinggi di Indonesia, terutama pada usia produktif. Pola makan yang tidak seimbang dan gaya hidup tidak sehat menjadi faktor penyebab prevalensi penyakit jantung yang tinggi. Bidang ilmu kedokteran mulai beradaptasi dan mengandalkan model prediksi otomatis berbasis komputer untuk diagnosis secara tepat dan akurat. Data tentang penyakit jantung seringkali memiliki ketidakseimbangan, yaitu jumlah data pada kelas minoritas lebih kecil daripada kelas mayoritas. Oleh karena itu, teknik oversampling seperti SMOTE dan ADASYN digunakan untuk menangani masalah ini. Hasil dari penelitian ini Algoritma Random Forest Classifier menjadi model perbandingan terbaik dengan akurasi sekitar 90,71%. Penerapan teknik oversampling SMOTE + Random Forest, akurasi dapat meningkat hingga sekitar 94,54% dengan kurva ROC sebesar 98,4%. Model diagnosa yang akurat dapat menjadi media bagi tenaga medis untuk mengambil langkah pencegahan yang tepat dan meningkatkan kualitas perawatan pasien.Kata kunci: ADASYN, Klasifikasi, Pohon Keputusan, Regresi, SMOTEAbstractHeart disease is rapidly increasing in Indonesia and has become the primary cause of death, particularly among those in their productive years. The prevalence of heart disease is due to unhealthy lifestyle choices and an imbalanced diet. The medical field is relying more heavily on computer-based automatic prediction models to ensure precise and accurate diagnoses. However, data on heart disease is frequently imbalanced, with fewer cases in the minority class. To resolve this issue, oversampling techniques such as SMOTE and ADASYN have been implemented. The study demonstrates that the Random Forest Classifier Algorithm is the most effective comparison model, with an accuracy rate of approximately 90.71%. By implementing the SMOTE + Random Forest oversampling technique, the accuracy rate increased to around 94.54%, with a ROC curve of 98.4%. A highly accurate diagnostic model is essential for enabling medical personnel to take appropriate preventive measures and enhance the quality of patient care.Keywords: ADASYN, Classification, Decision Tree, Regresi, SMOTE
Pendekatan Unsupervised learning dalam Segmentasi Kesehatan: Perbandingan K-Means dan DBSCAN MASRURIYAH, ANIS FITRI NUR; MARDIAH, MARDIAH; ANANDA, MUHAMMAD DWI; MALIK, KARENINA NURMELITA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 10, No 1 (2025): MIND Journal
Publisher : Institut Teknologi Nasional Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v10i1.99-113

Abstract

AbstrakSegmentasi kesehatan berbasis data pemeriksaan medis penting untuk mendukung strategi pencegahan penyakit. Penelitian ini membandingkan metode clustering K-Means dan DBSCAN menggunakan Silhouette Score dan Davies-Bouldin Index. Hasil menunjukkan bahwa K-Means dengan 8 cluster memberikan performa terbaik dengan Silhouette Score 0.2972 dan Davies-Bouldin Index 1.2934, dibandingkan konfigurasi lainnya. DBSCAN memperoleh Silhouette Score 0.2837, menunjukkan pendekatan berbasis densitas juga efektif dalam pengelompokan data. Dengan hasil ini, K-Means dengan 8 cluster dipilih sebagai metode terbaik untuk segmentasi kesehatan dalam penelitian ini. Temuan ini dapat mendukung analisis data medis untuk pencegahan penyakit yang lebih efektif dan personal.Kata kunci: Segmentasi Kesehatan, Clustering, K-Means, DBSCAN, Silhouette Score, Davies-Bouldin IndexAbstractHealth segmentation based on medical examination data plays a crucial role in supporting disease prevention strategies. This study compares K-Means and DBSCAN clustering methods, evaluated using Silhouette Score and Davies-Bouldin Index, to identify the most effective segmentation approach. Experimental results indicate that K-Means with 8 clusters achieves the best performance, yielding a Silhouette Score of 0.2972 and a Davies-Bouldin Index of 1.2934, outperforming other configurations. Meanwhile, DBSCAN attains a Silhouette Score of 0.2837, demonstrating the efficacy of density-based clustering in handling medical data. Based on these findings, K-Means with 8 clusters emerges as the most optimal method for health segmentation in this study. These insights contribute to the advancement of data-driven disease prevention strategies and personalized healthcare management..Keywords: Health Segmentation, Clustering, K-Means, DBSCAN, Silhouette Score, Davies-Bouldin Index