Claim Missing Document
Check
Articles

Found 33 Documents
Search

ANALISIS KESIAPAN SEKOLAH MENENGAH DALAM MENERAPKAN E-VOTING MENGGUNAKAN MODEL TECHNOLOGY READINESS INDEX Hazira, Nadila; Anam, M. Khairul; Agustin, Wirta; Fitri, Triyani Arita; Zamsuri, Ahmad; Syam, Salmaini Safitri
ZONAsi: Jurnal Sistem Informasi Vol. 6 No. 2 (2024): Publikasi Artikel ZONAsi: Periode Mei 2024
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/zn.v6i2.18400

Abstract

Voting can be interpreted as a way of making decisions based on the largest number of votes. So far, voting is carried out by ticking or voting on a ballot paper as an option in holding the election for OSIS chairman at SMAN 15 Pekanbaru. This method is considered still very conventional amidst advances in technology and information which has weaknesses in terms of efficiency and effectiveness. The weaknesses of conventional voting are: the decision is not the result of consensus, some participants are forced to accept the decision that has been taken, some participants often do not accept the decision, the aspirations of the participants are not fully channeled. To reduce problems arising from manual voting, it is necessary to analyze the readiness of secondary schools in implementing e-voting using the Technology Readiness Index model. The method that can be used to measure the level of user readiness in using technology is the Technology Readiness Index (TRI). In order to find out the results of the analysis and test the readiness of secondary schools in implementing the new system, the author will conduct a survey by distributing a Google Form link containing a list of statements regarding the readiness of secondary school residents, especially at SMAN 15 Pekanbaru, in using the web-based E-Voting system for the election of chairman. Student Council. The survey results will be analyzed using the SPSS 25.0 application and also calculated using the Technology Readiness Index Method
Retraksi: Penerapan Data Mining Menggunakan Algoritma Apriori untuk Menentukan Pola Penyebab Gelandangan dan Pengemis Agustin, Wirta; Muharmi, Yulya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020721376

Abstract

Artikel dengan judul "Penerapan Data Mining Menggunakan Algoritma Apriori untuk Menentukan Pola Penyebab Gelandangan dan Pengemis" telah dilakukan retraksi dan pembatalan penerbitan dari Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Volume 7 No 2, April 2020 pada link http://jtiik.ub.ac.id/index.php/jtiik/article/view/1376.Alasan pembatalan penerbitan adalah artikel tersebut juga telah terbit di Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM) pada Volume 1 No. 2, September 2018 dengan judul "Apriori Algorithm through RapidMiner for Age Patterns of Homeless and Beggars" dan link http://ejournal.uin-suska.ac.id/index.php/IJAIDM/article/view/5670.Di lihat di proses review:Proses review pada artikel di IJAIDM:Artikel direvisi pada tanggal : 15 dan 20 Agustus 2018Artikel diterima untuk diterbitkan tanggal: 26 September 2018Proses review pada artikel JTIIK:Artikel dikirimkan: 7 Desember 2018Revisi dilakukan: 7 Januari 2019 dan 4 Maret 2019Dinyatakan diterima untuk diterbitkan: 5 Mei 2019Cek Turnitin terakhir: 4 Maret 2019 (belum terdeteksi jurnal yang sama di IJAIDM) Dilihat dari proses review pada kedua jurnal tersebut, penulis dianggap melakukan pelanggaran terhadap etika publikasi yang sudah ditandatangani penulis saat mengirimkan artikel tersebut di JTIIK.  
Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA) Anam, M Khairul; Mahendra, Muhammad Ihza; Agustin, Wirta; Rahmaddeni, Rahmaddeni; Nurjayadi, Nurjayadi
INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Vol 6 No 1 (2022): February 2022
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (514.221 KB) | DOI: 10.29407/intensif.v6i1.15870

Abstract

The Social Security Administrative Body is a legal entity established to administer social security programs. News about BPJS policies is often found online and social media that has received responses from netizens as a form of public opinion on the policy. One of them is the opinion of netizens on social media Twitter. Ideas can be positive, neutral, or negative. These opinions are processed using the Support Vector Machine (SVM) method, in some SVM studies still getting unsatisfactory results, with rates below 60%. For this reason, it is necessary to have feature selection or a combination with the other methods to obtain higher accuracy. To see the actors who influence the opinion of netizens on the topic of BPJS, the Social Network Analysis (SNA) method is used. Based on the SVM Method's test results, the best accuracy results are obtained in combining the SVM Method with Adaboost, with an accuracy rate of 92%. Compared to the pure SVM method by 91%, the Combination of SVM Particle Swarm Optimization (PSO) by 87% and SVM using Feature Selection Genetic Algorithm (GA) by 86%.