Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Riset Kimia

MANUFACTURE OF PLASTICS FILM CONTAINING OF POLYSTIRENE, POLYCAPROLACTONE, POLY(3-HIDROKSIBUTYRATE-CO-3- HIDROXYVALERATE) AND BIODEGRADATION STUDY IN OCEAN WATER Dewi, Asiska Permata; Zaini, Erizal; Djamaan, Akmal
Jurnal Riset Kimia Vol 7, No 2 (2014): March
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v7i2.167

Abstract

 ABSTRACTThe manufacture of a biodegradable plastics film containing of polymer synthetic polystyrene(PS) and biopolymer of polycaprolactone (PCL), poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-ko-3HV)] and biodegradation study in ocean water has been carried out. Plastics filmcontaining of PS/PCL/P(3HB-ko-3HV) produced by blending techniques followed by solventcasting with ratios were of 100/0/0, 95/5/0, 95/0/5, 90/5/5, 85/10/5, 85/5/10. This testing wasconducted based on immersion test method recommend by American Society for Testing andMaterials. Poly blend plastics film PS/PCL/P(3HB-ko-3HV) were characterized by tensilestrength, thermal properties and SEM analysis. The profiles of the rate biodegradation view byweight reduction of the tested plastic film for 1-7 weeks period. Tensile strength analysisshowed the decreasing of tensile strength with the addition of P(3HB-ko-3HV). Thermalanalysis showed a decreasing in the melting point with the addition of PCL and P(3HB-co-3HV). SEM micrograph showed the destruction occurred and erosion at surface of plastic filmduring observation time. The rate of biodegradation showed that increasing of PCL and P (3HBco-3HV) in a mixture of plastic film, so biodegradation increased.Keywords: polystyrene, polycaprolactone, poly(3-hidroxybutyrate-co-3-hydroxyvalerate),biodegradation, film plastic.
PENGARUH PENGGUNAAN PENYALUT BIOBLEND PS/PCL TERHADAP PELEPASAN ZAT AKTIF UREA GRANUL -, Salman; -, Febriyenti; Djamaan, Akmal
Jurnal Riset Kimia Vol 8, No 2 (2015): March
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v8i2.234

Abstract

The most widely used surfactant is an anionic surfactant which is synthesized from petroleum namely Linear Alkylbenzene sulphonate (LABS). Methyl Ester Sulfonate which is currently being developed. Surfactant can produced from palm oil methyl ester via sulfonation sulfonate. When in this research using sodium metabisulphite. The aims of this work is to synthesize Methyl Ester Sulfonate surfactant from Palm Oil Methyl Ester using Sodium Metabisulphite and a catalyst Calcium Oxide. The effects of time and the mole ratio are also investigated. Sulfonation process carried out in 4, 5, 6 hours with mole ratio of 1: 0,5, 1:1, 1: 1,5, temperature of 80° C and with stirring speed of 450 rpm. It haven been found that the surfactant produced has density of (0.89490 g/cm3 - 0.89545 g/cm3), viscosity (2.0323 cP - 2.1329 cP), pH (2,03 - 2,48), surface tension (32.60 mN/m - 33.60 mN/m), interfacial tension (30.45 mN/m - 30.94 mN/m), and the stability emulsion (59.17% - 89, 17%).
MANUFACTURE OF PLASTICS FILM CONTAINING OF POLYSTIRENE, POLYCAPROLACTONE, POLY(3-HIDROKSIBUTYRATE-CO-3- HIDROXYVALERATE) AND BIODEGRADATION STUDY IN OCEAN WATER Asiska Permata Dewi; Erizal Zaini; Akmal Djamaan
Jurnal Riset Kimia Vol. 7 No. 2 (2014): March
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v7i2.167

Abstract

 ABSTRACTThe manufacture of a biodegradable plastics film containing of polymer synthetic polystyrene(PS) and biopolymer of polycaprolactone (PCL), poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-ko-3HV)] and biodegradation study in ocean water has been carried out. Plastics filmcontaining of PS/PCL/P(3HB-ko-3HV) produced by blending techniques followed by solventcasting with ratios were of 100/0/0, 95/5/0, 95/0/5, 90/5/5, 85/10/5, 85/5/10. This testing wasconducted based on immersion test method recommend by American Society for Testing andMaterials. Poly blend plastics film PS/PCL/P(3HB-ko-3HV) were characterized by tensilestrength, thermal properties and SEM analysis. The profiles of the rate biodegradation view byweight reduction of the tested plastic film for 1-7 weeks period. Tensile strength analysisshowed the decreasing of tensile strength with the addition of P(3HB-ko-3HV). Thermalanalysis showed a decreasing in the melting point with the addition of PCL and P(3HB-co-3HV). SEM micrograph showed the destruction occurred and erosion at surface of plastic filmduring observation time. The rate of biodegradation showed that increasing of PCL and P (3HBco-3HV) in a mixture of plastic film, so biodegradation increased.Keywords: polystyrene, polycaprolactone, poly(3-hidroxybutyrate-co-3-hydroxyvalerate),biodegradation, film plastic.
PENGARUH PENGGUNAAN PENYALUT BIOBLEND PS/PCL TERHADAP PELEPASAN ZAT AKTIF UREA GRANUL Salman -; Febriyenti -; Akmal Djamaan
Jurnal Riset Kimia Vol. 8 No. 2 (2015): March
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v8i2.234

Abstract

The most widely used surfactant is an anionic surfactant which is synthesized from petroleum namely Linear Alkylbenzene sulphonate (LABS). Methyl Ester Sulfonate which is currently being developed. Surfactant can produced from palm oil methyl ester via sulfonation sulfonate. When in this research using sodium metabisulphite. The aims of this work is to synthesize Methyl Ester Sulfonate surfactant from Palm Oil Methyl Ester using Sodium Metabisulphite and a catalyst Calcium Oxide. The effects of time and the mole ratio are also investigated. Sulfonation process carried out in 4, 5, 6 hours with mole ratio of 1: 0,5, 1:1, 1: 1,5, temperature of 80° C and with stirring speed of 450 rpm. It haven been found that the surfactant produced has density of (0.89490 g/cm3 - 0.89545 g/cm3), viscosity (2.0323 cP - 2.1329 cP), pH (2,03 - 2,48), surface tension (32.60 mN/m - 33.60 mN/m), interfacial tension (30.45 mN/m - 30.94 mN/m), and the stability emulsion (59.17% - 89, 17%).