Claim Missing Document
Check
Articles

Found 23 Documents
Search

Systematic Literature Review: Implementation COBIT as a Best Practice of Electronic Based Government System Governance Puspitaningrum, Ari Cahaya; Fitrani, Laqma Dica; Sintiya, Endah Septa
Sistemasi: Jurnal Sistem Informasi Vol 13, No 1 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i1.3639

Abstract

Presidential Regulation of the Republic of Indonesia No. 95 of 2018 told that the implementation of SPBE is recommended to create clean, effective, transparent and accountable government governance as well as quality and trustworthy public services. This research use the systematic literature review (SLR) method by reviewed the implementation of COBIT best practices in various government organization in Indonesia in the last 5 years. This was done by analyzed each selected study and it can be concluded that there were 27 scientific journal studies and 3 conference studies. Analysis of 30 studies resulted in several groupings of studies, those are based on study objectives, frequently found focus areas, and frequently used domains. Based on the grouping of selected studies, it can be seen that there are 2 different objectives in using COBIT in government agencies, 1) the objective of measuring the level of maturity and capability of IT governance and 2) the objective of designing an IT governance system. The domains most frequently found in the selected studies are APO and DSS. Apart from that, this research also found a focus area that is often found, namely IT services and there are recommendations for further research based on being able to evaluate and design IT governance in the COBIT domain which is often found based on the focus area.
Analisis Efektivitas Algoritma K-Means Clustering dalam Pengelompokan Siswa Berdasarkan Kemampuan Multidimensi Rafandi, Hanif Naufal; Nurhasan, Usman; Sintiya, Endah Septa
Techno.Com Vol. 24 No. 4 (2025): November 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i4.14653

Abstract

Pengelompokan siswa berbasis data sangat penting untuk mendukung evaluasi yang adil dan menyeluruh, mengingat penilaian potensi selama ini cenderung terfokus pada aspek akademik saja. Penelitian ini mengembangkan sistem rekomendasi regu inti lomba kepramukaan menggunakan algoritma K-Means Clustering, dengan dataset berisi 120 siswa SMP yang dinilai berdasarkan parameter akademik, non-akademik, serta pencapaian SKU dan SKK. Jumlah cluster ditentukan sebanyak 24, sesuai dengan kategori lomba berdasarkan aturan Kwarnas mengenai lomba pramuka tingkat penggalang. Proses pengolahan data meliputi normalisasi dan reduksi dimensi menggunakan Principal Component Analysis (PCA). Evaluasi kualitas clustering dilakukan menggunakan metrik Silhouette Score dan Davies–Bouldin Index (DBI). Hasil terbaik diperoleh pada konfigurasi random_state = 42, n_init = 20, dan max_iter = 300, dengan Silhouette Score sebesar 0,1238 dan DBI sebesar 1,4418. Meskipun kualitas pengelompokan tergolong rendah dengan hasil Silhoutte Score = 0.102 dan DBI = 1.362, sistem ini tetap memberikan solusi objektif bagi pembina dalam memilih siswa berpotensi secara adil dan menyeluruh. Sistem ini juga menjawab keluhan orang tua terkait ketidakterlibatan anak dalam lomba, karena pemilihan dilakukan berdasarkan potensi keseluruhan kategori lomba, bukan hanya satu kategori untuk membentuk tim regu inti pramuka.   Kata kunci: K-Means Clustering, Principal Component Analysis (PCA), Silhouette Score, Davies–Bouldin Index, Regu Inti Pramuka.
Analyzing the Application of Optical Character Recognition: A Case Study in International Standard Book Number Detection Imam Fahrur Rozi; Ahmadi Yuli Ananta; Endah Septa Sintiya; Astrifidha Rahma Amalia; Yuri Ariyanto; Arin Kistia Nugraeni
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 2 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4367

Abstract

In the era of advanced education, assessing lecturer performance is crucial to maintaining educational quality. One aspect of this assessment involves evaluating the textbooks authored by lecturers. This study addresses the problem of efficiently detecting International Standard Book Numbers (ISBNs) within these textbooks using optical character recognition (OCR) as a potential solution. The objective is to determine the effectiveness of OCR, specifically the Tesseract platform, in facilitating ISBN detection to support lecturer performance assessments. The research method involves automated data collection and ISBN detection using Tesseract OCR on various sections of textbooks, including covers, tables of contents, and identity pages, across different file formats (JPG and PDF) and orientations. The study evaluates OCR performance concerning image quality, rotation, and file type. Results of this study indicate that Tesseract performs effectively on high-quality, low-noise JPG images, achieving an F1 score of 0.97 for JPG and 0.99 for PDF files. However, its performance decreases with rotated images and certain PDF conditions, highlighting specific limitations of OCR in ISBN detection. These findings suggest that OCR can be a valuable tool in enhancing lecturer performance assessments through efficient ISBN detection in textbooks.