Claim Missing Document
Check
Articles

KAJIAN SIMULASI OVERDISPERSI PADA REGRESI POISSON DAN BINOMIAL NEGATIF TERBOBOTI GEOGRAFIS UNTUK DATA BALITA GIZI BURUK Puput Cahya Ambarwati; Indahwati Indahwati; Muhammad Nur Aidi
Indonesian Journal of Statistics and Applications Vol 4 No 3 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i3.684

Abstract

One type of geographically weighted regression (GWR) that can be used to explain the relationship between the response variables in the form of count data and explanatory variables is the geographically weighted Poisson regression (GWPR). In the GWPR, there is an assumption that should be fulfilled called equidispersion, a condition where the variance equals the mean. If that condition is ignored, overdispersion will occur. Overdispersion is a condition when the variance is greater than the mean. The use of GWPR analysis in an overdispersion situation will produce a smaller standard error than it should be (underestimate). This may produce a significant test result leading to the rejection of the null hypothesis. One of the classic approaches commonly used to handle overdispersion in GWR is geographically weighted negative binomial regression (GWNBR). GWNBR is derived from a mixture of Poisson and Gamma distributions which is similar to the negative binomial distribution. Simulation data and real data were used in this study. The results showed that the application of GWPR on overdispersion data could increase the number of rejections of H0 or the number of p-values. The application of GWNBR on the East Java malnutrition toddler data in 2017 showed that the GWNBR model is better than GWPR based on the comparison of AIC, Pseudo R2, and RMSE.
Comparison of Functional Regression and Functional Principal Component Regression for Estimating Non-Invasive Blood Glucose Level: Perbandingan Metode Regresi Fungsional dan Regresi Komponen Utama Fungsional untuk Menduga Kadar Glukosa Darah pada Alat Non-Invasif Nurul Fadhilah; Erfiani Erfiani; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 5 No 1 (2021)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v5i1p14-25

Abstract

The calibration method is an alternative method that can be used to analyze the relationship between invasive and non-invasive blood glucose levels. Calibration modeling generally has a large dimension and contains multicolinearities because usually in functional data the number of independent variables (p) is greater than the number of observations (p>n). Both problems can be overcome using Functional Regression (FR) and Functional Principal Component Regression (FPCR). FPCR is based on Principal Component Analysis (PCA). In FPCR, the data is transformed using a polynomial basis before data reduction. This research tried to model the equations of spectral calibration of voltage value excreted by non-invasive blood glucose level monitoring devices to predict blood glucose using FR and FPCR. This study aimed to determine the best calibration model for measuring non-invasive blood glucose levels with the FR and FPCR. The results of this research showed that the FR model had a bigger coefficient determination (R2) value and lower Root Mean Square Error (RMSE) and Root Mean Square Error Prediction (RMSEP) value than the FPCR model, which was 12.9%, 5.417, and 5.727 respectively. Overall, the calibration modeling with the FR model is the best model for estimate blood glucose level compared to the FPCR model.
Simulation Study of Robust Geographically Weighted Empirical Best Linear Unbiased Predictor on Small Area Estimation: Simulasi Metode Prediksi Tak Bias Linier Terbaik Empiris Terboboti Geografis Kekar pada Pendugaan Area Kecil Naima Rakhsyanda; Kusman Sadik; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 5 No 1 (2021)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v5i1p50-60

Abstract

Small area estimation can be used to predict the population parameter with small sample sizes. For some cases, the population units that are close spatially may be more related than units that are further apart. The use of spatial information like geographic coordinates are studied in this research. Outlier contaminations can affect small area estimations. This study was conducted using simulation methods on generated data with six scenarios. The scenarios are the combination of spatial effects (spatial stationary and spatial non-stationary) with outlier contamination (no outlier, symmetric outliers, and non-symmetric outliers). The purpose of this study was to compare the geographically weighted empirical best linear unbiased predictor (GWEBLUP) and robust GWEBLUP (RGWEBLUP) with direct estimator, EBLUP, and REBLUP using simulation data. The performance of the predictors is evaluated using relative root mean squared error (RRMSE). The simulation results showed that geographically weighted predictors have the smallest RRMSE values for scenarios with spatial non-stationary, therefore offer a better prediction. For scenarios with outliers, robust predictors with smaller RRMSE values offer more efficiency than non-robust predictors.
The Influence of Women’s Empowerment on The Preference for Contraceptive Methods in Indonesia: A Multinomial Logistic Regression Modelling Tahira Fulazzaky; Indahwati Indahwati; Anwar Fitrianto; Erfiani Erfiani; Khusnia Nurul Khikmah
JURNAL INFO KESEHATAN Vol 22 No 3 (2024): JURNAL INFO KESEHATAN
Publisher : Research and Community Service Unit, Politeknik Kesehatan Kemenkes Kupang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31965/infokes.Vol22.Iss3.1213

Abstract

The concept of women's empowerment encompasses enabling women to take control of their own lives, independently make choices, and fulfill their complete capabilities. Numerous research studies examined the correlation between the empowerment of women and their reproductive health. In Indonesia, female labor force participation is relatively low. As a result, research on the influence of empowering women on contraceptive method preference in Indonesia makes sense. This research aims to find the multinomial logistic regression model in choosing contraceptive methods for married women in Indonesia and to identify the women’s empowerment traits that most impact contraceptive method choice.  For this study, the researchers utilized secondary data obtained from the 2017 Indonesian Demographic and Health Survey (IDHS). The participants consisted of women between the ages of 15 and 49 who were married. The total number of respondents sampled was 49,216. Variables that significantly affect contraceptive method use include the respondent's current employment, the respondent has bank account or other financial institution accounts, the cumulative count of offspring previously born and beating justified if the wife argues with her husband. The analysis is obtained using the multinomial logistic regression test, independency, multicollinearity, and parameter test, and the selection is made by considering either the smallest value of Akaike's information criterion or the option that achieves the highest level of accuracy. Findings highlight four significant variables: Firstly, employed women are more likely to use contraceptives than the unemployed. Secondly, access to banking services correlates with a higher likelihood of contraceptive use. Thirdly, women with more children tend to prefer long-acting reversible contraceptives. Lastly, endorsement of spousal violence justifiability is linked to conventional contraceptive selection. These results emphasize the roles of employment, financial access, family size, and gender-based violence perceptions in shaping contraceptive choices in Indonesia. Model 3 emerges as the most accurate predictor of preferences after eliminating six variables based on rigorous testing and multicollinearity considerations. These findings underscore the importance of addressing economic empowerment and gender-related issues in Indonesian reproductive health programs and policies. Such a comprehensive approach can enhance women's autonomy, enabling them to make crucial life choices and ultimately improving their overall well-being.         
Analysis of VAE-LSTM Performance in Detecting Anomalies in Average Daily Temperature Data in Jakarta 2000-2023 RAMDANI, INDRI; ANGRAINI, YENNI; INDAHWATI, INDAHWATI
Jurnal Natural Volume 25 Number 2, June 2025
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jn.v25i2.41856

Abstract

Climate change is happening worldwide, so global climate conditions are a major concern. In densely populated urban areas such as Jakarta, it is impossible to avoid the impacts of climate change, particularly the daily changes in air temperature. Therefore, a sophisticated and efficient approach is needed to find inconsistencies in daily air temperature data to provide critical information for sustainable urban planning and efforts to reduce risks. This research will combine two innovative approaches for hybrid anomaly detection. The method combines generative methods and can extract complex features, such as variational autoencoder (VAE), along with the temporal coding capabilities of long-short-term memory (LSTM), a type of Recurrent Neural Network (RNN). The data used in this study is the average daily air temperature data in Jakarta, obtained from the Kemayoran Meteorological Station and provide by the Meteorology, Climatology, and Geophysics Agency (BMKG). The data used is daily from April 2000 to December 2023. The threshold used to detect anomalies was 229.5, which resulted in excellent performance, namely F1-Score 0.985, Recall 1.000, and Precision 0.971. The VAE-LSTM model identified all dates with significant temperature anomalies, including January 21, 2014, February 22, 2014, November 12, 2014, and February 9, 2015. These dates are significant as they represent extreme weather events that can have severe implications for urban planning and climate change adaptation. The anomalies fall into the categories of point and contextual anomalies. This study contributes to climate research by providing evidence of the effectiveness of deep learning-based hybrid models in detecting complex and context-sensitive temperature anomalies.
The Implementation of the Fuzzy C-Means Method in Handling Outlier Data in the 2021 Village Potential Data of Bengkulu Province Panjaitan, Intan Juliana; Indahwati, Indahwati; Afendi, Farit Mochamad
ComTech: Computer, Mathematics and Engineering Applications Vol. 16 No. 1 (2025): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v16i1.12274

Abstract

Clustering groups aims to ensure similarity within clusters and disparity between them. The research evaluated the Fuzzy C-Means method’s effectiveness in clustering large datasets containing outliers, focusing on the 2021 Village Potential data from Bengkulu Province. The dataset, comprising 1,514 observations from villages and urban villages, provided a comprehensive resource for understanding regional development. Outliers, a common challenge in cluster analysis, were detected using univariate and multivariate methods, revealing substantial variability. PCA was applied, improving clustering quality to address multicollinearity among variables. In the results, the fuzzifier (w) parameter in the FCM method plays a crucial role in controlling the degree of membership for data points in clusters, which can potentially reduce the impact of outliers, enhancing clustering robustness and accuracy. The FCM method effectively produces clusters with high intra-cluster homogeneity and inter-cluster heterogeneity. Using the Elbow method, three optimal clusters are identified. Cluster 1, dominated by villages in Bengkulu City, is the most advanced, with superior infrastructure and services, but the fewest villages business units, necessitating economic empowerment. Cluster 2, comprising villages in North Bengkulu Regency, demonstrates moderate development but suffers from poor transportation access, requiring improvements to support socio-economic activities. Cluster 3, dominated by villages in Kaur Regency, is the least developed, with limited basic services and infrastructure, highlighting the need for substantial investments in governance and essential services. These findings provide actionable insights for village development in Bengkulu Province, supporting targeted policies tailored to each cluster’s unique characteristics.
Performance Evaluation of Cheng & Church (CC) and Spectral Biclustering Algorithms under Collinearity and Overlap Conditions Hafsah, Siti; Indahwati, Indahwati; Wijayanto, Hari
Scientific Journal of Informatics Vol. 12 No. 2: May 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i2.26413

Abstract

Purpose: This study aims to address methodological challenges in evaluating biclustering algorithms under simultaneous collinearity and overlap, which often co-occur in real world multivariate data but are rarely analyzed simultaneously. This research highlights the importance of understanding how these structural challenges affect local pattern detection in data mining applications. Methods: A simulation study was conducted using synthetic matrices embedded with two constant biclusters under 15 combinations of collinearity levels (ρ = 0.3,0.6,0.9) and overlap degrees (none, small, large). Each scenario was replicated 100 times. Performance was assessed using the Liu and Wang Index (ILW), while a three-way ANOVA tested the effects of algorithm type, collinearity, and overlap. Result: Spectral Biclustering maintained stable ILW scores despite increasing collinearity, while CC performed better in low-overlap scenarios but was more sensitive to collinearity. Under high collinearity and large overlap, both algorithms experienced notable degradation. The ANOVA confirmed all main effects and interactions were significant (p < 0.001). Novelty: This study contributes empirical evidence regarding the influence of interacting structural characteristics on biclustering performance. The results deliver practical insights for selecting suitable algorithms and emphasize the potential advantages of hybrid approaches that integrate the stability of spectral methods with the adaptability of residual-based techniques.
RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION FOR MULTIVARIATE LINEAR MIXED MODEL IN ANALYZING PISA DATA FOR INDONESIAN STUDENTS Santi, Vera Maya; Notodiputro, Khairil Anwar; Indahwati, Indahwati; Sartono, Bagus
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (528.449 KB) | DOI: 10.30598/barekengvol16iss2pp607-614

Abstract

The Program for International Student Assessment (PISA), becomes one of the references or indicators used to assess the development of students' knowledge and skills in each member country of the Organization for Economic Cooperation and Development (OECD). The results of the PISA survey in 2018 placed Indonesia in the bottom 10, indicating that the implementation of the national education system has not been successful. This underlies the need for a more in-depth study of the factors that influence PISA data scores not only statistically qualitatively but also quantitatively which is still very rarely done. The data structure of the PISA survey results is complex, which involves multicollinearity, multivariate response variables, and random effects. Thus, it requires an appropriate statistical analysis method such as the multivariate mixed linear regression (MLMM) model. In this study, secondary data from the results of the 2018 PISA survey with Indonesian students as the smallest unit of observation were used as sample. School is used as an intercept random effect which is assumed to be normally distributed. Multicollinearity is overcome by selecting independent variables based on AIC and BIC values. Estimation of variance and random effect parameters was performed using the restricted maximum likelihood (REML) method. Based on the estimator of the variance of random effects for the response variables of mathematics, science, and reading literacy, it was obtained 1548.12, 1359.39, and 1082.48, respectively, which explains the significant effect of each school as a random effect on the three response variables.
OUTLIER DETECTION ON HIGH DIMENSIONAL DATA USING MINIMUM VECTOR VARIANCE (MVV) A., Andi Harismahyanti; Indahwati, Indahwati; Fitrianto, Anwar; Erfiani, Erfiani
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (473.955 KB) | DOI: 10.30598/barekengvol16iss3pp797-804

Abstract

High-dimensional data can occur in actual cases where the variable p is larger than the number of observations n. The problem that often occurs when adding data dimensions indicates that the data points will approach an outlier. Outliers are part of observations that do not follow the data distribution pattern and are located far from the data center. The existence of outliers needs to be detected because it can lead to deviations from the analysis results. One of the methods used to detect outliers is the Mahalanobis distance. To obtain a robust Mahalanobis distance, the Minimum Vector Variance (MVV) method is used. This study will compare the MVV method with the classical Mahalanobis distance method in detecting outliers in non-invasive blood glucose level data, both at p>n and n>p. The test results show that the MVV method is better for n>p. MVV shows more effective results in identifying the minimum data group and outlier data points than the classical method.
THE ORDINAL LOGISTIC REGRESSION MODEL WITH SAMPLING WEIGHTS ON DATA FROM THE NATIONAL SOCIO-ECONOMIC SURVEY Amelia, Reni; Indahwati, Indahwati; Erfiani, Erfiani
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (461.793 KB) | DOI: 10.30598/barekengvol16iss4pp1355-1364

Abstract

Ordinal logistic regression is a method describing the relationship between an ordered categorical response variable and one or more explanatory variables. The parameter estimation of this model uses the maximum likelihood estimation having assumption that each sample unit having an equal chance of being selected, or using simple random sampling (SRS) design. This study uses data from the National Socio-Economic Survey (SUSENAS) having two-stage one-phase sampling (not SRS). So, the parameter estimation should consider the sampling weights. This study describes the parameter estimation of the ordinal logistic regression with sampling weight using the pseudo maximum likelihood method, especially in SUSENAS sampling design framework. The variance estimation method uses Taylor linearization. This study also provides numerical examples using ordinal logistic regression with sampling weight. Data used is 121,961 elderly spread over 514 districts/cities. Testing data (20%) is used to obtain the accuracy of the prediction results. The variables used in this study are the health status of the elderly as the response variable, and nine explanatory variables. The results of this study indicate that the ordinal logistic regression model with sampling weights is more representative of the population and more capable to predict minority categories of the response variable (poor and moderate health status) than is without sampling weights.
Co-Authors A. A., Muftih Aditya Ramadhan Agus Mohamad Soleh Agustini , Ni Ketut Yulia Agustini, Ni Ketut Yulia Aji Hamim Wigena Akbar Rizki Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amelia, Reni Amin, Yudi Fathul Anang Kurnia Anik Djuraidah Antonius Benny Setyawan Ari Handayani Arie Anggreyani Aristawidya, Rafika Assyifa Lala Pratiwi Hamid Aunuddin . Bagus Sartono Budi Susetyo Cahyani Oktarina Chrisinta, Debora Daswati, Oktaviyani Dea Fisyahri Akhilah Putri Dian Kusumaningrum Erfiani Erfiani Erfiani Erfiani Erfiani Etis Sunandi Farit Mochamad Afendi Farit Mohamad Afendi Fatimah Fatimah Fira Nurahmah Al Aminy Fitrianto, Anwar Fulazzaky, Tahira Ghina Fauziah Hanifa Izzati Hari Wijayanto Harismahyanti A., Andi Hasanah, Lailatul I Gusti Putu Purnaba I Made Sumertajaya Iin Maena Indah, Yunna Mentari Irawan Irawan Jaya, Eddy Santosa Julianti, Elisa D Kamil, Farid Ikram Karunia, Nia Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Kholidiah, Kholidiah Khusnia Nurul Khikmah Kusman Sadik Latifah, Leli Lestari, Nila Lili Puspita Rahayu Miranti, Ita Miranti, Ita Mohammad Masjkur Mualifah, Laily Nissa Mualifah, Laily Nissa Atul Muhammad Nur Aidi Naima Rakhsyanda Narindria, Yasmin Nadhiva Nurul Fadhilah Panjaitan, Intan Juliana Puput Cahya Ambarwati Putra, Stefanus Morgan Setyadi Perdana Putri, Christiana Anggraeni Ramdani, Indri Rasyid, Baharun Ray Sastri Regan, Regan Reni Amelia Reni Amelia Reza, Charolina Therezia Rifki Hamdani Rindy Anggun Pertiwi Salvina Salvina Silmi Annisa Rizki Manaf Siti Hafsah Siwi Haryu Pramesti Tahira Fulazzaky Tina Aris Perhati Titin Agustina Titin Suhartini Titin Suhartini, Titin Utami Dyah Syafitri Vera Maya Santi Vitona, Desi Wahyudi Setyo Yenni Angraini Yuniarty, Titin Zulkarnain, Rizky _ Aunuddin