Claim Missing Document
Check
Articles

Analysis of Technology Acceptance of Enterprise Resource Planning (ERP) System in The Regional Office of PT. XYZ Throughout Indonesia Baiq Findiarin Billyan; Mohammad Isa Irawan
IPTEK The Journal for Technology and Science Vol 32, No 2 (2021)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v32i2.7876

Abstract

The companies that started to renew their system using ERP-based systems, since 2000 the percentage of success reached 75%, and 25% is a failure. There are several issues such as the quality of human resources, not user-friendly system, incorrect format for data recording, system errors, unstable connections, the long-time process in the system, etc. Related to the issue, the ERP SAP technology provider provides local support to help end-users use the system for daily work. In this study, to analyze the factors of acceptance technology of ERP system, we use the UTAUT2 method, and for analyzing those hypotheses, we use the PLS-SEM metho
Measure The Significance of Learning Value and Trust Factors for Online Learning Technology Acceptance in Indonesia Yuda Dian Harja; Mohammad Isa Irawan; Rita Ambarwati
IPTEK The Journal for Technology and Science Vol 31, No 2 (2020)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v31i2.5583

Abstract

One of the main stages to achieve the success of online learning technology is the acceptance of the technology by its users. Therefore, identifying how significant the influence of a factor in the success of technology acceptance is very important. This study aims to measure the significance of learning value and trust factors on the acceptance model of online learning technology. To test the research hypothesis used the Partial Least Square Structural Equation Modeling (PLS-SEM) method. This research is a quantitative study with a survey approach to respondents, where respondents must have used online learning technology. The result of the study shows the influence of learning value and trust factors on the acceptance of online learning technology is significant. The results of the study can be taken into consideration for providers of online learning technology in Indonesia as a reference in making strategic decisions for further development.
The Rate of Seller Correctness in Naming Batik Solo Pattern: Studied in Indonesia Online Marketplace Berlian Rahmy Lidiawaty; Mohammad Isa Irawan; Raden Venantius Hari Ginardi
JURNAL SOSIAL HUMANIORA (JSH) Special Edition 2020
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24433527.v0i1.6780

Abstract

Every pattern in batik Solo has different meaning that affects its use. There are patterns for cultural ceremony, including funerals. Therefore, the seller of batik Solo’s product have to be able to give the right title as the name of its product in online marketplace, so the customer will not missw ear the batik in the wrong ceremony. According to the importance of naming batik Solo’s product, this study aims to assess the accuracy of batik Solo pattern naming by sellers in Indonesian online marketplace. Thus the result of it can be used by the buyer as a recommendation where is the best marketplace to purchase the batik Solo product. First, the study collect the images sample from four biggest marketplace in Indonesia; Tokopedia, Bukalapak, Shopee and Lazada. The sample was collected by inputing the name of batik Solo pattern in the marketplace’s search bar. The keywords that have been used to collect the sample are batik parang, batik truntum, batik sawat, batik kawung and batik slobog. Those are the kinds of batik Solo pattern that has different expedience from each other. After 834 samples have been collected, the study assigns whether the seller give the correct name to the batik Solo product or not. The result of this study are the correctness percentage (CP) of the seller in naming their batik Solo product. In general the CP is 82,13%, Marketplace with the highest CP is Lazada (95,42%) and the highest CP of pattern is parang (91%). Beside that, the study also rates marketplace with the parameter of Best Marketplace by Pattern (BMP) and Best Marketplace of Category (BMC). The study divided the parameters to rate marketplace, because the best marketplace that has the highest correctness percentage in one category of a pattern is not always be a marketplace that has the highest correctness percentage in that pattern.
PENGKLASTERAN DATA KATEGORIS DENGAN ALGORITMA SHARED NEAREST NEIGHBOR Alvida Mustika Rukmi; Mohammad Isa Irawan; Nurul Hidayat
Limits: Journal of Mathematics and Its Applications Vol 6, No 1 (2009)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.674 KB) | DOI: 10.12962/j1829605X.v6i1.1432

Abstract

Pengklasteran objek data merupakan salah satu cara untukmempermudah dalam membaca data, terutama data berdimensi tinggi. Obyek-obyek data berada dalam satu klaster jika mempunyai kesamaan yang tinggi, dan sebaliknya, berada pada klaster berbeda jika menunjukkan ketidaksamaan. Data kategoris merupakan jenis data yang sering digunakan pada database/dataset. Data teks merupakan salah satu data kategoris. Pengklasteran dengan algoritma shared nearest neighbor (SNN) didasarkan pada anggapan bahwa titik-titik akan berada dalam klaster yang sama jika jumlah shared nearest neighbor melebihi ambang batas yang ditentukan. Algoritma SNN mampu memberikan hasil pengklasteran data teks dengan baik, dimana teks dengan tingkat kesamaan yang ditentukan, akan berada pada klaster yang sama.
Studi Komparatif antara Jaringan Syaraf Tiruan Boltzman Machine dan Algoritma Genetika untuk Optimasi Traveling Salesman Problem Muhammad Isa Irawan
Limits: Journal of Mathematics and Its Applications Vol 1, No 1 (2004)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (202.232 KB) | DOI: 10.12962/j1829605X.v1i1.1346

Abstract

Traveling Salesman Problem (TSP) dikenal sebagai suatu permasalahan optimasi klasik dan Non Deterministic Polynomial-time Complete (NPC). Permasalahan ini melibatkan se- orang salesman yang harus melakukan kunjungan sekali pada semua kota sebelum kembali ke kota awalnya, sampai akhirnya perjalanan itu disebut sempurna. Penyelesaian dari ma- salah ini adalah mencari nilai optimum yang paling murah, misalkan perjalanan dengan jarak terpendek atau yang mempunyai total harga yang termurah.Dalam paper ini akan dianalisis penyelesaian TSP dengan JST Boltzman Machine dan Algoritma Genetika. Dari hasil komparasi tersebut ternyata JST Boltzman Machine mem- berikan hasil lebih baik untuk menyelesaikan masalah TSP. Kata kunci : Jaringan Syaraf Tiruan, Boltzman Machine , Algoritma Genetika, TSP.
A Genetic Algorithm with Best Combination Operator for the Traveling Salesman Problem Muhammad Luthfi Shahab; Titin J. Ambarwati; Soetrisno Soetrisno; Mohammad Isa Irawan
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 5, No 2 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.627 KB) | DOI: 10.12962/j24775401.v5i2.5830

Abstract

In this research, we propose a genetic algorithm with best combination operator (BC(x,y)O) for the traveling salesman problem. The idea of best combination operator is to find the best combination of some disjoint sub-solutions (also the reverse of sub-solutions) from some known solutions. We use BC(2,1)O together with a genetic algorithm. The proposed genetic algorithm uses the swap mutation operator and elitism replacement with filtration for faster computational time. We compare the performances of GA (genetic algorithm without BC(2,1)O), IABC(2,1)O (iterative approach of BC(2,1)O), and GABC(2,1)O (genetic algorithm with BC(2,1)O). We have tested GA, IABC(2,1)O, and GABC(2,1)O three times and pick the best solution on 50 problems from TSPLIB. From those 50 problems, the average of the accuracy from GA, IABC(2,1)O, and GABC(2,1)O are 65.12%, 94.21%, and 99.82% respectively.
Sequence Alignment Using Nature-Inspired Metaheuristic Algorithms Muhammad Luthfi Shahab; Mohammad Isa Irawan
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 3, No 1 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (142.567 KB) | DOI: 10.12962/j24775401.v3i1.2118

Abstract

The most basic process in sequence analysis is sequence alignment, usually solved by dynamic programming Needleman-Wunsch algorithm. However, Needleman-Wunsch algorithm has some lack when the length of the sequence which is aligned is big enough. Because of that, sequence alignment is solved by metaheuristic algorithms. In the present, there are a lot of new metaheuristic algorithms based on natural behavior of some species, we usually call them as nature-inspired metaheuristic algorithms. Some of those algorithm that are more efficient are firefly algorithm, cuckoo search, and flower pollination algorithm. In this research, we use those algorithms to solve sequence alignment. The results show that those algorithms can be used to solve sequence alignment with good result and linear time computation.
Classification of Poverty Levels Using k-Nearest Neighbor and Learning Vector Quantization Methods Santoso Santoso; Mohammad Isa Irawan
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 2, No 1 (2016)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (288.38 KB) | DOI: 10.12962/j24775401.v2i1.1578

Abstract

Poverty is the inability of individuals to fulfill the minimum basic needs for a decent life. The problem of poverty is one of the fundamental problems that become the central attention of the local government. One of the government efforts to overcome poverty is using the alleviation programs. Government often faces some difficulties to sort out of the poverty levels in the society. Therefore it is necessary to conduct a study that helps the government to identify the poverty level so that the aid did not miss the targets. In order to tackle this problem, this paper leverages two classification methods: k-nearest neighbor (k-NN) and learning vector quantization (LVQ). The purpose of this study is to compare the accuracy of the value of both methods for classifying poverty levels. The data attributes that are used to characterize poverty among others include: aspects of housing, health, education, economics and income. From the testing results using both methods, the accuracy of k-NN is 93.52%, and the accuracy of LVQ is 75.93%. It can be concluded that the classification of poverty levels using k-NN method gives better performance than using LVQ method.
XGBoost and Network Analysis for Prediction of Proteins Affecting Insulin based on Protein Protein Interactions Mohammad Hamim Zajuli Al Faroby; Mohammad Isa Irawan; Ni Nyoman Tri Puspaningsih
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 4, November 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v5i4.1076

Abstract

Protein Interaction Analysis (PPI) can be used to identify proteins that have a supporting function on the main protein, especially in the synthesis process. Insulin is synthesized by proteins that have the same molecular function covering different but mutually supportive roles. To identify this function, the translation of Gene Ontology (GO) gives certain characteristics to each protein. This study purpose to predict proteins that interact with insulin using the centrality method as a feature extractor and extreme gradient boosting as a classification algorithm. Characteristics using the centralized method produces  features as a central function of protein. Classification results are measured using measurements, precision, recall and ROC scores. Optimizing the model by finding the right parameters produces an accuracy of  and a ROC score of . The prediction model produced by XGBoost has capabilities above the average of other machine learning methods.
Prediksi Harga Saham Jangka Pendek di Indonesia Menggunakan Metode Gaussian Process Regression Elnora Oktaviyani Gultom; Mohammad Isa Irawan
Jurnal Sains dan Seni ITS Vol 11, No 2 (2022)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373520.v11i2.76914

Abstract

Prediksi harga saham umumnya dilakukan secara jangka panjang, sedangkan harga saham tiap waktu mengalami perubahan yang signifikan. Tujuan dari Tugas Akhir ini untuk memprediksi harga saham jangka pendek dengan membangkitkan model Gaussian Process Regression menggunakan beberapa kernel yang berbeda. Model dengan menggunakan kernel Rational Quadratic dan RBF memiliki nilai rata-rata RMSE terkecil dibandingkan kedua kernel lainnya. Prediksi harga saham berdasarkan waktu dengan menggunakan kernel tersebut diperoleh prediksi satu minggu kedepan menghasilkan nilai EVS sebesar 0.99871. Dari hasil penelitian pada data historis harga saham 01 Desember 2019 sampai 25 Februari 2021, prediksi harga saham minggu berikutnya dihasilkan bahwa perusahaan PT Gudang Garam Tbk memiliki nilai jual yang paling tinggi dan PT United Tractors Tbk memiliki nilai beli lebih murah. Sedangkan perusahaan pada sektor Consumer Non-Cyclical memiliki rata-rata nilai jual dengan return yang tertinggi dan sektor Industrial memiliki nilai rata-rata harga beli saham dalam jumlah lebih banyak yang tertinggi.
Co-Authors AA. Masroeri Abduh Riski, Abduh Adrianus Bagas Tantyo Dananjaya Ahmad Ridwan Akhmad Arif Junaidi Alan Catur Nugraha Alexander Setiawan Alvida Mustika Rukmi Alvida Mustikarukmi Amira, Siti Azza Andreas Handojo Antonio Galileo Tando Ari Kusumastuti Arie Dipareza Syafei Arifah, Enny Durratul Auliya Rahmayani Baiq Findiarin Billyan Chyntia Kumalasari Puteri Danang Wahyu Wicaksono Daniel Happy Putra Darmaji Darmaji Darmawan, Didiet Edi Satriyanto Ekky Hidma Octia Rahmah Elly Matul Imah Elnora Oktaviyani Gultom Elsen Ronando Erna Apriliani Fahim, Kistosil Fendhy Ongko Giandi, Oxsy Ginardi, Raden Venantius Hari Hadi Prasetiya Haloho, Freddi Hartanto Setiawan Hendy Hendy Hendy Hozairi Imam Mukhlash Imam Mukhlash Ira Puspitasari Juhari Juhari, Juhari Ketut Buda Artana Khilmy, Akhmad Ku Khalif, Ku Muhammad Naim Mahardika, Kadek Eri Mahdiyah, Umi Mardlijah - Maulana, Muhammad Agung Adi Mey Lista Tauryawati Mohamad Muhtaromi Mohammad Hamim Zajuli Al Faroby Mohammad Iqbal Mohammad Jamhuri Mohd Aziz, Mohd Khairul Bazli Mondal, Kartick Chandra Muchamad Jati Nugroho Muhammad Ahnaf Amrullah Muhammad Athoillah, Muhammad Muhammad Fakhrur Rozi Muhammad Hajarul Aswad Muhammad, Noryanti Muhammad, Noryanti binti Mujiono, Edo Priyo Utomo Putro Ni Nyoman Tri Puspaningsih Nugraha, Arma Perwira NURUL HIDAYAT Nurul Hidayat Pratama, Qoria Yudi Putri, Endah R.M. Putri, Endah Rokhmati Merdika Putris , Nadhifa Afrinia Dwi Rasyadan Taufiq Probojati Resi Arumin Sani Rita Ambarwati Rita Ambarwati Sukmono Robin Wijaya, Robin Rohwana, Ulir Ronando, Elsen Rukmini, Meme Santoso Santoso Sepriadi, Robby Setiawan, Muhammad Nanda Setumin, Samsul Shahab, Muhammad Luthfi Siti Maghfiroh Soetrisno Soetrisno Sulastri Sulastri Titin J. Ambarwati Victory Tyas Pambudi Swindiarto YAN ADITYA PRADANA Yongky Ujianto Yuda Dian Harja Zulfa Afiq Fikriya