Claim Missing Document
Check
Articles

METODE STEREO VISION UNTUK MEMPERKIRAKAN JARAK OBJEK DARI KAMERA Izzati Muhimmah; Novian Mahardika Putra; Meilita .; Deny Rahmalianto; Dhomas Hatta Fudholi
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2012
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Proses pengenalan objek dan mengetahui berapa jarak objek dari titik pengambilan gambar merupakan fitur yang penting pada robot cerdas. Stereo vision merupakan metode suatu yang menyerupai fungsi mata manusia. Salah satu contoh cara yang dapat langsung diimplementasikan pada teknologi robot adalah dengan menggunakan dua buah citra yang diambil dengan prinsip kerja seperti mata. Sebelum menghitung jarak, segmentasi objek dilakukan dengan menggunakan ciri intensitas. Satu objek hasil segmentasi dikenali dari dua buah citra yang diambil sesuai dengan prinsip stereo vision. Titik tengah dari setiap citra dijadikan referensi dalam perhitungan jarak antara kamera dan objek dengan menggunakan rumus jarak Euclidean. Metode yang diusulkan diuji untuk memperkirakan jarak antara kamera dengan empat objek, yaitu: lilin, bola tenis bola pingpong,, dan gawang. Hasil pengujian menunjukkan tingkat keakuratan yang baik dalam memperkirakan jarak pada objek lilin, bola tenis, dan bola pingpong. Namun, metode ini masih belum akurat untuk memperkirakan jarak antara kamera dengan gawang.
Purwarupa Sistem Penghitungan Sel Polen Berdasarkan Citra Mikroskopis Digital Ainan Nur; Izzati Muhimmah
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2018
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada tumbuhan, serbuk sari atau sel polen memiliki peranan penting untuk terjadinya fertilisasi. Faktor umum yang mendorong terjadinya proses fertilisasi adalah viablitias sel polen tersebut. Metode yang digunakan untuk mengetahui viabilitas sel polen salah satunya adalah metode pewarnaan dengan menggunakan FDA (Fluorescein Diacetat). Setelah melakukan metode pewarnaan, sel polen diamati dibawah mikroskop untuk mengetahui sel yang hidup dan sel mati. Sel inilah yang akan digunakan dalam penelitian penulis. Perbedaan sel hidup dan mati dapat dibedakan berdasarkan pendaran warnanya. Citra yang diamati dibawah mikroskop akan memberikan perbedaan pendaran warna. Dalam penelitian ini, penulis menggunakan nilai rata-rata RGB untuk membedakan pendaran warna. Kemudian nilai RGB tersebut diuji dengan menggunakan T-test untuk mengetahui perbedaan rata-rata yang dimiliki oleh sel berpendar dan tidak pendar. Dari hasil T-test didapat bahwa nilai R berbeda secara signifikan. Selain itu, dilakukan ekstraksi ciri bentuk yaitu area, eccentricity, perimeter, dan circularity terhadap objek berpendar dan tidak pendar. Nilai ini yang akan menjadi batasan perbedaan antara sel berpendar dan tidak pendar. Kemudian setelah dilakukan seleksi fitur, dilakukan proses klasifikasi dengan menggunakan metode jarak Mahalanobis pada nilai G dan B. Hasil klasifikasi kemudian diuji dengan menggunakan uji validasi Single Decision Threshold yang menghasilkan nilai akurasi sebesar 92,79%, nilai presisi sebesar 91,15%, dan nilai recall sebesar 93,05%.
SEGMENTASI AREA GIGI MENGGUNAKAN FUZZY C-MEANS Hardian Oktavianto; Izzati Muhimmah; Taufiq Hidayat
Jurnal Teknologi Informasi dan Terapan Vol 4 No 2 (2017)
Publisher : Jurusan Teknologi Informasi Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25047/jtit.v4i2.63

Abstract

Researches with early detection of caries using x-ray topic has been widely developed, generally before doing object detection, the early step is segmentation. Image segmentation is one of the digital image processing steps used to segregate an area or object observed with other areas or objects. Segmentation has an important role as the initial determination of the desired area or object so that it can be continued to the identification stage. FCM (fuzzy c-means) algorithm is one of object segmentation technique or object grouping in the field of digital image processing study. The basic concept of FCM is to determine the centroid and members of each group adaptively, in principle FCM uses a fuzzy grouping model so that a data or element becomes a member of all the clusters that are formed. Segmentation of the dental area using FCM with 4 clusters aims to segment the enamel, dentin, pulp, and backround areas. The result of segmentation using FCM is influenced by the condition of the dataset used. The background area of the entire dataset can be well segmented. FCM is also capable of segmenting the enamel area but in some datasets, the enamel segmentation results are still mixed with other teeth areas. For the dentin and pulp areas, the segmentation result of these two areas is not optimal yet; most of the dentin and or pulp areas are still segmented with the other teeth’s area.
PROTOTYPE SMART INSTRUMENT UNTUK KLASIFIKASI PENYAKIT HIPERTENSI BERDASARKAN JNC-7 Dudi Irawan; Izzati Muhimmah; Tito Yuwono
Jurnal Teknologi Informasi dan Terapan Vol 4 No 2 (2017)
Publisher : Jurusan Teknologi Informasi Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25047/jtit.v4i2.68

Abstract

High blood disease or famous to known as hypertension almost 95% the cause is very difficult to know. One way to know the condition of our health is by checking routine to the nearest clinic or hospital. Hypertension is one of the risk factors for dangerous diseases, such as stroke, heart attack, and kidney failure. Hypertension can cause high morbidity (pain) and mortality (death), hypertension is often called silent killer disease. People with Hypertension rarely show early symptoms, and their recognition is usually through screening, or when seeking medical treatment for unrelated health problems. The cause factors of hypertension include weight and height, body fat, and alcohol levels inside of body. To know the condition of body to hypertension need a monitoring system and use tool tensimeter. In this research has been made the means of detecting factor symptoms of hypertension. After the measurements are done by each sensor then the data is processed by Arduino Microcontroller to be processed to computer via serial port (USB). On the computer data that has been sent will be processed using decision tables with databases obtained from experts, the resultin a decision will give classification of hypertension and non-pharmacological management.
Pemrosesan Citra Digital dalam Klasifikasi Hasil Urinalisis Menggunakan Kamera Smartphone Khairul Hafidh; Izzati Muhimmah; Linda Rosita
Jurnal Informatika dan Rekayasa Elektronik Vol. 2 No. 1 (2019): JIRE April 2019
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/jire.v2i1.70

Abstract

Penelitian ini mengusulkan salah satu pendekatan pengolahan citra dan klasifikasi dalam analisis urin (urinalisis) dengan metode carik celup menggunakan dipstik urin sepuluh parameter (dipstik 10P). Adapun yang diurinalisis dalam pemeriksaan urin meliputi leukosit, nitrit, urobilinogen, protein, keasaman, darah, berat jenis, keton, bilirubin dan glukosa pada urine. Penggunaan kamera yang disematkan pada smartphone dapat menjadi solusi dalam akuisisi citra untuk data reference dan data uji dipstik. Setelah akuisi citra dilanjutkan dengan skema pemrosesan citra dipstik. Citra hasil tangkapan kamera smartphone menempati ruang warna RGB yang selanjutnya digunakan sebagai nilai ekstraksi fitur. Hasil dari ekstraksi fitur warna RGB digunakan sebagai nilai untuk mengukur jarak kedekatan antara reference dan data uji. Metode yang digunakan adalah Jarak Manhattan. Nilai jarak terdekat menjadi solusi dalam masalah klasifikasi hasil urinalisis ini. Perancangan sistem menggunakan bahasa pemrograman Python dengan package OpenCV. Hasil dari perancangan ini menunjukkan sistem dapat melakukan klasifikasi.
ANALISA VISUAL MENGGUNAKAN ETETOOLKIT FRAMEWORK TERHADAP PENYAKIT BETA-THALASSEMIA DI JAWA TENGAH BAGIAN SELATAN Lalu Mutawalli; Moh Reza Syaifur Rizal; Wayan Tunas Artama; Rohmatul Fajriyah; Izzati Muhimmah; Lantip Rujito
Jurnal Informatika dan Rekayasa Elektronik Vol. 2 No. 1 (2019): JIRE April 2019
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/jire.v2i1.75

Abstract

Deteksi peristiwa biomolekuler dalam visual yang akan dianalisis menggunakan komputasi untuk mendeteksi efektivitas dan akurasi penyakit. Sebagai hasil utama, banyak analisis visual, mulai dari pengelompokan gen hingga filogenetik, menghasilkan pohon hierarkis. Toolkit Lingkungan Eksplorasi Pohon (ETE) yang membantu manipulasi, analisis, dan visualisasi pohon hierarkis otomatis. Kemudian, dalam makalah ini, daftar mutasi β-thalassemia yang merupakan kelompok kelainan darah herediter yang ditandai oleh anomali dalam sintesis rantai beta hemoglobin yang menghasilkan berbagai fenotipe mulai dari anemia berat hingga individu tanpa gejala klinis. Hasil ini adalah ETEToolkit dapat menguraikan mutasi ini untuk ditampilkan melalui pohon dan penyelarasan dalam satu bingkai, kemudian kita dapat menyesuaikan dan merender ke dalam gambar PDF. Mutasi ini berlokasi di pusat Jawa, Indonesia.
Application Of Logistic Regression In Analysis Of Factors That Affect Implementation Of Electronic Medical Record Agung Purwo Wicaksono; Kariyam Kariyam; Izzati Muhimmah
EKSAKTA: Journal of Sciences and Data Analysis VOLUME 17, ISSUE 1, February 2017
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/eksakta.vol17.iss1.art6

Abstract

Electronic Medical Record (EMR) has now become a trend in the world of health care. Lot of obstacles and barriers that interfere implementation of EMR. This paper discussed the eleven factors suspected to affect the implementation of EMR, with a case study hospital in Banyumas. By using logistic regression analysis obtained eight of the eleven factors that significantly affect the implementation of RME. The eight factors are financial factors, Human Resources (HR), the process of changing, psychological factors, legal factors, the time factor, organizational factors, and ICT trends. Technology, infrastructure, and social is a factor that does not significantly affect the implementation of EMR in hospital. ICT trends are new factors that significantly affect the implementation of EMR in hosital.
Segmentation of Overlapping Cervical Cells in Normal Pap Smear Images Using Distance-Metric and Morphological Operation Rahadian Kurniawan; Izzati Muhimmah; Arrie Kurniawardhani; Indrayanti Indrayanti
CommIT (Communication and Information Technology) Journal Vol. 11 No. 1 (2017): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v11i1.1957

Abstract

The automatic interpretation of Pap Smear image is one of challenging issues in some aspects. Accurate segmentation for each cell is an important procedurethat must be done so that no information is lost during the evaluation process. However, the presence of overlapping cells in Pap Smear image make the automated analysis of these cytology images become more difficult. In most ofthe studies, cytoplasm segmentation is the difficult stage because the boundaries between cells are very thin. In this study, we propose an algorithm that can segment the overlapping cytoplasm. First, the morphology operation and global thresholding to segment cytoplasm is done. Second, the overlapping area on cytoplasm region is separated using morphological operation and distance criteria on each pixel. The proposed method has been evaluated against the results of manual tracing by experts. The experiment results show that the proposed method can segment the overlapping cytoplasm as similar as experts do, i.e., 2:897 3:632 (mean std) using Hausdorff distance.
Segmentation of Tuberculosis Bacilli Using Watershed Transformation and Fuzzy C-Means Rahadian Kurniawan; Izzati Muhimmah; Arrie Kurniawardhani; Sri Kusumadewi
CommIT (Communication and Information Technology) Journal Vol. 13 No. 1 (2019): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v13i1.5119

Abstract

The easily transmitted Tuberculosis (TB) disease is attributed to the fact that Mycobacterium Tuberculosis (MTB) bacteria/viruses can be transmitted through the air. One of the methods to screen the TB disease is by reading sputum slides. Sputum slides are colored sputum samples of TB patients placed on microscopic slides. However, TB disease microscopic analysis has some limitations since it requires high accuracy reading and well-trained health personnel to avoid errors in the process of interpretation. Furthermore, the number of TB patients in the Primary Health Care (PHC) and the process of manual calculation of bacteria in a field of view often complicate the decision-making in the screening process conducted by the medical staffs. In this paper, the researchers propose the use of Watershed Transformation and Fuzzy C-Means combination to help solve the problem. The researchers collect the photo shooting of three PHC in Indonesia with 55 images of sputum from different TB patients. The assessed results of the proposed method are compared with the opinions of three Microbiology doctors. The comparison shows Cohen’s Kappa Coefficient value of 0.838. It suggests that the proposed method can detect Acid Resistant Bacteria (ARB) although it needs some improvement to achieve higher accuracy.
Identifikasi Kerusakan Jaringan Histologi Pada Ginjal Dengan Fitur Tekstur Menggunakan Model Fitur Gray Level Coocurrence Matrix (GLCM) Zainul Arifin; Izzati Muhimmah; Ika Firdianingsih
INFORMAL: Informatics Journal Vol 2 No 2 (2017): INFORMAL - Informatics Journal
Publisher : Faculty of Computer Science, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Congestion is one type of damage that occurs in the histology of the kidney tissue, where there is excessive blood within the blood vessels of a particular area. In this research, we will design a system to detect congestion in the histology network of the kidneys using texture feature approach with gray level cooccurence matrix (GLCM) method, as well as using vector machine support method (SVM). The subject of data used is histology image of mouse kidney tissue using H & E staining obtained at medical faculty of Islamic university of indonesia. image data used as many as 50 congestion training images and 50 normal training images with the size 256 x 256 pixels. while the test image uses an average size of 3000 x 3000 pixels. the results of the experiments performed with cluster parameters k = 2 to k = 5 show good results, with an average class accuracy rate of 80%, and the accuracy of the segment is 96%.
Co-Authors -, Indrayanti adelia sukma ardana Adeniar Yusnina Agung Purwo Wicaksono Agus Darmawan Ainan Nur Andhika Pratama Arif Sulaksana Putra Arrie Kurniawardhani Astrianty, Ledy Elsera Ause Labellapansa, Ause Azhari, M. Fauzan Aziz, Muhammad Thariq Dan Jeric Arcega Rustia Darmawan - Deny Rahmalianto Dhina Puspasari Wijaya, Dhina Puspasari Dhomas Hatta Fudholi Dimas Panji Eka Jalaputra Dimas Panji Eka Jalaputra Erika RE Denton Erlina Marfianti, Erlina Fajarwibowo, Dhimas Fajriyah, Rohmanul Franz, Annafi’ Galang Prihadi Mahardhika, Galang Prihadi Gracianna Devi, Micha Heksaputra, Dadang Helmi Roichatul Jannah Herlambang, Penggalih M Herman Yuliansyah Ika Fidianingsih Ika Firdianingsih Indrayanti, Indrayanti Indrayanti, Indrayanti Indri Dwi Febriani Irawan, Dudi Ivantoni, Redha Jamhari Jamhari July Arifianto Kariyam - Khairul Hafidh Komariyuli Anwariyah Kusumaningrum, Shinta Dewi Lailiyatus Sa'adah Lalu Mutawalli Lantip Rujito Latriwulansuci, Latriwulansuci Lestari, Tri Mukti Linda Rosita Lizda Iswari Meilita . Milano, Muhammad Khalifah Moh Reza Syaifur Rizal Mufti Syawaludin Muhammad Atnang Nazarudin, Zohan Novian Mahardika Putra Novyan Lusiyana Nurastuti Wijareni Nurdana Ahmad Fadil Oktavianto, Hardian Penggalih M Herlambang Penggalih M Herlambang Prabowo, Mei Rahadian Kurniawan Raisha Amini Rakhmawati, Restu Ratri Agung Nugraheni Reyer Zwiggelaar Riyanto, Didik Rizki Surtiyan Surya Rizky Eka Listanto Rohmatul Fajriyah Rohmatul Fajriyah Rositasari, Annisa S, Andika Bayu Sahriani Sasmito, Dinda Eling K Septia Rani Silvia Nurul Fata Smulders, Marinus J.M. Sri Kusumadewi Sri Winiarti TAUFIQ HIDAYAT Tien Budi Febriani Tito Yuwono, Tito Ummi Athiyah Wayan Tunas Artama Wigatning, Lestari H Wilda, Anisa Nurul Yasmini Fitriyati Yasmini Fitriyati, Yasmini Yuliansyah, Herman Yulianti, Ana ZAINUL ARIFIN