Claim Missing Document
Check
Articles

Prediction of Coffee Bean Quality Using Segmentation Methods And K-Nearest Neighbor Agung Pradana; Suhendro Yusuf Irianto; Sri Karnila; Hendra Kurniawan
Prosiding International conference on Information Technology and Business (ICITB) 2021: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND BUSINESS (ICITB) 7
Publisher : Proceeding International Conference on Information Technology and Business

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The condition of people's coffee farming management is relatively poor when compared to large stateowned plantations. The main problem in smallholder plantations is the quality of the results that do not meet standardization. This study designs a system that is able to identify the quality of coffee beans using Segmentation, K-Nearest Neighbor and Gray Level Co-occurrence Matrix methods. Based on the test results using texture feature extraction, the highest accuracy was obtained at K-5 of 85%. It is possible that if the K value used is too small, there will be a lot of noise which reduces the level of accuracy in data classification, but if the K value is too large it can cause errors in the range of values taken, which will indirectly affect the level of accuracy. The results of the study were the identification of coffee beans with good quality or poor quality. It is hoped that this research can contribute to improving the quality of people's coffee so that it can increase the production of people's coffee that is able to compete in the market.Keywords—Gray Level Co-occurrence Matrix, K-Nearest Neighbor, Segmentation
PKM PERENCANAAN KARIR DAN PERSIAPAN MEMASUKI DUNIA KERJA BAGI MAHASISWA TINGKAT AKHIR IIB DARMAJAYA Rika Febri Sasmita; Sri Karnila; Muhammad Saputra; Ambar Aditya Putra
Abdimas Toddopuli: Jurnal Pengabdian Pada Masyarakat Vol. 4 No. 1 (2022): Desember 2022
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/atjpm.v4i1.2022

Abstract

Tingginya masa tunggu untuk mendapatkan pekerjaan yang layak bagi lulusan sebuah perguruan tinggi yang telah menempuh masa studi menjadi sebuah problem tidak hanya bagi pemerintah namun menjadi sebuah problem atau menjadi permasalahan bagi perguruan tinggi yang meluluskan peserta didiknya hal tersebut juga terjadi di IIB Darmajaya. Berdasarkan hal tersebut diperlukan sebuah bimbingan teknis bagi mahasiswa tingkat akhir yang akan lulus dan memasuki dunia kerja maka tim pengabdian melihat sebuah urgensi berupa pelatihan perencanaan karir dan persiapan memasuki dunia kerja. Metode kegiatan yang digunakan adalah penyuluhan/ pelatihan singkat yang terdiri atas beberapa kegiatan. ceramah, praktik dan diskusi yang dibagi menjadi beberapa kegiatan. Pelatihan ini di ikuti oleh peserta sebanyak 30 (Tiga Puluh) orang mahasiswa tingkat akhir baik dari mahasiswa dari Institusi Darmajaya maupun luar IIB Darmajaya. Kegiatan yang dilakasanakan berupa Seminar atau webinar nasional dengan waktu sehari penuh dengan jumlah materi sebanyak 4 materi diantaranya mengenai merubah mindset dan sikap setelah lulus kuliah, etika dunia kerja, pengembangan diri dan motivasi serta pemberian materi mengenai psikotest dan wawancara dunia kerja. Setelah dilaksanakannya kegiatan pengabdian beberapa hal yang terimplementasi dari hasil kegiatan diantaranya memberikan nilai tambah kepada para calon lulusan sehingga lebih percaya diri ketika memasuki dunia kerja dan bisa mendapatkan pekerjaan yang layak sesuai dengan bidang konsentrasi pendidikan yang didalami.
PELATIHAN PEMANFAATAN IT DAN ENTERPRENURSHIP PADA MASA PANDEMI BAGI SISWA/I DI SMA IT AN QORDHOVA Neni Purwati; Sri Karnila; Hendra Kurniawan; Nurjoko Nurjoko; Sri Rahayu
Jurnal Publika Pengabdian Masyarakat Vol 4, No 02 (2022): Jurnal Publika Pengabdian Masyarakat
Publisher : Institut Informatika dan Bisnis Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/jppm.v4i02.3297

Abstract

Pengabdian pada masyarakat ini dilaksanakan berdasarkan kebutuhan dan permintaan dari pihak sekolah SMA IT Qordhova pada masa pandemi covid 19, yang bertujuan untuk menambah pengetahuan siswa/siswi tentang manfaat TI dalam dunia enterpreneurship, dan cara berjualan secara online. Kegiatan ini memberikan materi agar siswa dapat memanfaatkan peluang dari dampak covid-19 bahwa manusia banyak beraktivitas dengan TI, oleh karena itu siswa/siswi membutuhkan pengetahuan bahwa Teknologi Informasi adalah sarana yang dapat mengupgrade kemampuan individu, terutama untuk menjalankan bisnis pada dunia enterpreneurship. Kegiatan ini dilaksanakan dalam tiga fase yaitu persiapan, pelaksanaan, dan pelaporan. Fase pertama yakni persiapan dimulai dengan melakukan kunjungan ke sekolah untuk melakukan koordinasi dan mempersiapkan hal-hal yang berkaitan dengan pelaksanaan kegiatan. Fase pelaksanaan kegiatan menerapkan metode ceramah dengan teknik presentasi, praktik langsung, dan dengan tanya jawab, serta permainan game education. Kegiatan ini dilaksanakan di SMA IT An Qordhova selama 3 hari pada tanggal 3-5 Agustus 2020 yang dihadiri sekitar 15 siswa/siswi dan 5 orang guru. Fase pelaporan dikerjakan setelah terlaksananya kegiatan pengabdian. Kegiatan ini berdampak bahwa siswa/siswi telah memiliki akun dan dapat mulai berjualan di medsos.
Image Sketch Based Criminal Face Recognition Using Content Based Image Retrieval Adimas, Adimas; Irianto, Suhendro Y; Karnila, Sri; Yuliawati, Dona
Scientific Journal of Informatics Vol 8, No 2 (2021): November 2021
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v8i2.27865

Abstract

Purpose: Face recognition is a geometric space recording activity that allows it to be used to distinguish the features of a face. Therefore, facial recognition can be used to identify ID cards, ATM card PINs, search for one’s committed crimes, terrorists, and other criminals whose faces were not caught by Close-Circuit Television (CCTV). Based on the face image database and by applying the Content-Base Image Retrieval method (CBIR), committed crimes can be recognized on his face. Moreover, the image segmentation technique was carried out before CBIR was applied. This work tried to recognize an individual who committed crimes based on his or her face by using sketch facial images as a query. Methods: We used an image sketch as a querybecause CCTV could not have caught the face image. The research used no less than 1,000 facial images were carried out, both normal as well asabnormal faces (with obstacles). Findings:Experiments demonstrated good enough in terms of precision and recall, which are 0,8 and 0,3 respectively, which is better than at least two previous works.The work demonstrates a precision of 80% which means retrieval of effectiveness is good enough. The 75 queries were carried out in this work to compute the precision and recall of image retrieval. Novelty: Most face recognition researchers using CBIR employed an image as a query. Furthermore, previous work still rarely applied image segmentation as well as CBIR.
Strategi Peningkatan Penjualan Produk Menggunakan Market Basket Analysis Neni Purwati; Sri Karnila
Jurnal Sistem Informasi Bisnis Vol 13, No 2 (2023): Volume 13 Nomor 2 Tahun 2023
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21456/vol13iss2pp96-103

Abstract

Toko Galo-galo merupakan toko yang menjual hasil produk UMKM berupa makanan, yang awalnya hanya menjual produk somay, dengan semakin meningkatnya permintaan pelanggan, maka toko menambah aneka makanan frozen food seperti bakso, sosis, naget dan lain-lain. Melihat kebutuhan pelanggan yang beraneka ragam, maka salah satu strategi yang dilakukan yaitu menganalisis aneka produk apa saja yang dibeli secara bersamaan, sehingga dapat menjadi rekomendasi bagi toko dan bagian pemasaran mengenai kombinasi produk yang diminati pelanggan. Proses pemasaran dan dokumentasi penjualan sebelumnya dengan menggunakanan layanan whatsapp, proses seperti ini dirasa kurang efektif dan efisien. Market Basket Analysis dengan Algoritma apriori dengan tahapan pengumpulan data, pra-pemrosesan data, transformasi data, dan dengan bantuan tools Orange pada tahap analisis pola frekuensi tinggi, menghasilkan frekuensi itemsets dengan MinSupp 30% sebagai The Most Tree Items yaitu Naget Salam 250gr-Support 100%, Otak-otak Sanjaya(25)-Support 100%, dan Chikuwa Mini Shifudo 500gr-Support 96.67%, dari penerapan algoritma apriori stok barang dapat ditambahkan jumlah produknya pada 3 produk tersebut, sedangkan pembentukan pola association rule dan pengujian Lift Ratio dari MinSupp 30%, MinConf 90%, Max Rules 30k, didapatkan Consequent Min Items 1 yaitu Otak-otak Sanjaya(25)-Naget Salam 250gr dengan Support 100%, Confidence 100% dan Lift Ratio 1, serta Consequent Min Items 2 yaitu Otak-otak Sanjaya(25), Chikuwa Mini Shifudo 500gr-Naget Salam 250gr, dengan Support 96.7%, Confidence 100% dan Lift Ratio 1, ini menunjukkan pasangan produk 2 dan 3 itemsets tersebut dapat disandingkan letaknya, atau posisi produknya dapat diletakkan berdekatan.
Sistem Informasi Monitoring Dan Evaluasi Vaksinasi Wilayah Provinsi Lampung Hendra Kurniawan; Denny Andreas; Neni Purwati; Sri Karnila; Nurjoko; Egi Safitri; Ruki Rizal
TEKNIKA Vol. 17 No. 2 (2023): Teknika Juli - Desember 2023
Publisher : Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.10205750

Abstract

Coronavirus Disease 2019 (COVID-19) is a new type of disease that has never been previously identified in humans. Residents in the Lampung Province Region, especially the East Lampung Regency area. The community has difficulty seeing the vaccination distribution map, they still use table data containing only the names and types of vaccines made by the East Lampung Health Service. The data collection is computerized but the data is presented in tabular form, using Google Forms, converted using Google Sheets and then reported to the district to be submitted to the East Lampung Health Office. Meanwhile, system development uses the Agile Development method. This research produces a web-based geographic information system that can display data in the form of a map of the distribution of covid-19 vaccination locations for the Lampung Province, especially East Lampung Regency. Keywords: Coronavirus Disease, Vaccination, Geographic Information System
PENGENALAN SMART FARMING KEPADA KELOMPOK TANI SEJAHTERA PEKON SINDANG MARGA KECAMATAN PULAU PANGGUNG KABUPATEN TANGGAMUS Setyawan, Dodi Yudo; Setiawati, Melia Gripin; Rosmalia, Lia; Nurfiana, Nurfiana; Karnila, Sri; Rosandy, Triowali
E-Amal: Jurnal Pengabdian Kepada Masyarakat Vol 4 No 2: Mei-Agustus 2024
Publisher : LP2M STP Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47492/eamal.v4i2.3221

Abstract

Pengabdian masyarakat Pengenalan Smart Farming pada Kelompok Tani Sejahtera Pekon Sindang Marga Kecamatan Pulau Panggung Kabupaten Tanggamus bertujuan meningkatkan produktivitas, efisiensi, dan kesejahteraan petani. Dengan adopsi Smart Farming, menggunakan teknologi seperti sensor tanah dan irigasi otomatis, produktivitas pertanian dapat meningkat. Teknologi ini juga dapat mengoptimalkan penggunaan sumber daya seperti air dan pupuk, mendukung keberlanjutan lingkungan, dan meningkatkan efisiensi produksi pertanian. Pengabdian ini diharapkan meningkatkan pendapatan dan kesejahteraan petani, serta menyebarkan pengetahuan tentang Smart Farming ke masyarakat luas untuk meningkatkan produktivitas pertanian secara keseluruhan. Dengan demikian, pengabdian ini menjadi langkah awal dalam mendorong transformasi pertanian menuju pertanian yang lebih modern, efisien, dan berkelanjutan di Pekon Sindang Marga dan wilayah lainnya.
Diabetes Mellitus Disease Prediction using Machine Learning Algorithms Safitri, Egi; Rofianto, Dani; Purwati, Neni; Kurniawan, Hendra; Karnila, Sri
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 12, No 4 (2024)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v12i4.84620

Abstract

Diabetes mellitus is a chronic disease with a rapidly increasing global prevalence, affecting around 422 million people, predominantly in low- and middle-income countries. Effective management of diabetes requires early detection and timely intervention. This study aims to develop an accurate predictive model for diabetes mellitus using three machine learning algorithms: Random Forest, Logistic Regression, and Decision Tree. The Pima Indians Diabetes dataset, comprising 768 patient records with various health indicators, was utilized for model training and evaluation. Exploratory data analysis revealed significant correlations between glucose levels, BMI, age, and diabetes risk. The dataset was split into 80% training and 20% testing sets. Models were validated using cross-validation and evaluated based on accuracy, precision, recall, and F1-score. Results indicated that Logistic Regression achieved the highest accuracy (75%) and balanced performance in identifying both positive and negative cases. Decision Tree excelled in recall, while Random Forest showed a slightly lower balance between precision and recall. The ROC curve analysis demonstrated that Random Forest had the highest AUC (0.82), followed by Logistic Regression (0.81) and Decision Tree (0.73). This study confirms that machine learning algorithms can effectively predict diabetes, providing valuable tools for early detection and intervention, ultimately reducing the global burden of diabetes mellitus.
Pendampingan Pemanfaatan IT Pada Anak Usia Sekolah di Desa Mulyo Sari Kecamatan Tanjung Sari Karnila, Sri; Oktaviani, Erni; Oktaviani, Asih; Yuni Puspita, Rima
ABDI AKOMMEDIA : JURNAL PENGABDIAN MASYARAKAT Vol. 2 No. 4 (2024)
Publisher : ABDI AKOMMEDIA : JURNAL PENGABDIAN MASYARAKAT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This service is carried out for the needs and strategies applied, for school-age children in Mulyo Sari Village, Tanjung Sari District in the utilization of IT (Information Technology) so that they can face the increasingly rapid development of technology. Problems that occur due to a lack of understanding of children in the introduction and use of IT at this time, can hurt children such as decreased motivation to learn, and some are less socialized because they are busy playing gadgets. The benefits of developing technology also have a positive impact, such as being a means and infrastructure for learning in the search for knowledge. To avoid negative consequences, assistance in utilizing technology is excellent. For this reason, it is hoped that the service will assist in utilizing technological developments in school-age children. Pengabdi will share by providing understanding material, and knowledge about the use of IT which is growing rapidly today. This service went well and had a good impact, 10% of the number of school-age children who participated in this service knew and could type using a laptop. Now 95% of school-age children already understand the parts and how to operate a laptop, not only that, but also increased knowledge about healthy IT pattern literacy.
Sistem Informasi Pendeteksi Penyakit Pada Kucing Dengan Metode Backward Chaining Karnila, Sri; Darmawan, Algifari
Arcitech: Journal of Computer Science and Artificial Intelligence Vol. 4 No. 2 (2024): December 2024
Publisher : Institut Agama Islam Negeri (IAIN) Curup

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29240/arcitech.v4i2.12033

Abstract

Cats are a popular pet in Indonesia, with a significant increase in the number of owners. However, difficulties in recognizing early symptoms of diseases often lead to delayed treatment and worsen the health condition of the cats. The purpose of this study is to design a web-based information system that can help detect diseases in cats earlier. The research methodology employs Backward Chaining to detect cat diseases at an early stage. The process begins with collecting symptoms from users, matching these symptoms against a database, and backtracking to determine the likely diseases. Black box testing shows that the system functions well, while validation with entered case data indicates that the Backward Chaining method is successful in providing relevant initial action recommendations. Unlike previous studies, which generally only developed systems based on symptom lists without deep inferential capabilities, this research fills a gap by integrating a more systematic backtracking mechanism through the Backward Chaining method. This approach allows the system to deliver more accurate and specific diagnoses based on a combination of symptoms.