Claim Missing Document
Check
Articles

Pengaruh Kemampuan Intelegensi dan Task Commitment Terhadap Hasil Belajar Matematika Siswa Kelas XII MAN 1 Jember Mufidah, Diana; Suharto, S; Setiawan, Toto Bara
Jurnal Edukasi Vol. 5 No. 1: Maret 2018 : Jurnal Edukasi
Publisher : Universitas Jember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/jukasi.v5i1.8375

Abstract

Hasil belajar matematika adalah penilaian hasil proses belajar matematika yang dinyatakan dalam bentuk angka, huruf, atau simbol yang dapat mencerminkan hasil yang telah dicapai oleh siswa atau anak dalam periode tertentu [1]. Dalam prosesnya hasil belajar dapat dipengaruhi oleh beberapa faktor. Intelegensi dan task commitment merupakan salah satu faktor intern yang dapat mempengaruhi hasil belajar. Penelitian ini mengkaji pengaruh kemampuan intelegensi dan task commitment terhadap hasil belajar matematika siswa kelas XII Man 1 Jember, serta mencari tahu manakah faktor yang lebih dominan diantara keduanya. Dalam penelitian ini metode pengumpulan data menggunakan metode dokumentasi dan kuesioner (angket). Pengambian sampel menggunakan teknik Proportionate Stratified Random Sampling yang mana jumlah sampel yang digunakann yaitu sebanyak 169 siswa. Berdasarkan proses analisis diperoleh hasil yaitu Kemampuan intelegensi dan task commitment siswa secara parsial (individu) ataupun bersama-sama mempengaruhi hasil belajar matematika siswa, dengan persamaan garis regresi Y = -30,575 + 1,140X1 + 0,288X2 + ei. Kemampuan intelegensi memilki pengaruh lebih dominan yaitu sebesar 5,6%, sedangkan task commitment memiliki pengaruh sebesar 3,1% Kata Kunci: Hasil Belajar Matematika, intelegensi, Task Commitment
Tingkat Berpikir Geometri Siswa Kelas VII-B SMP Negeri 1 Jember Materi Segiempat Berdasarkan Teori van Hiele ditinjau dari Hasil Belajar Matematika Utami, Mika Wahyuning; Setiawan, Toto Bara; Oktavianingtyas, Ervin
Jurnal Edukasi Vol. 3 No. 2: Juli 2016 : Jurnal Edukasi
Publisher : Universitas Jember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (265.458 KB) | DOI: 10.19184/jukasi.v3i2.3529

Abstract

Tujuan dari penelitian ini untuk mendeskripsikan tingkat berpikir geometri siswa kelas VII-B SMP Negeri 1 Jember berdasarkan teori van Hiele yang ditinjau dari hasil belajar siswa. Jenis penelitian yang digunakan adalah penelitian deskriptif . Berdasarkan hasil analisis jawaban soal tes dan hasil wawancara diperoleh tingkat berpikir geometri van Hiele pada siswa kelas VII-B SMP N 1 Jember secara umum mencapai tingkat 3 yaitu deduksi, namun mayoritas siswa memiliki tingkat berpikir geometri van Hiele pada tingkat 2 yaitu deduksi informal. Siswa yang mencapai tingkat 3. Siswa dengan hasil belajar tinggi dapat mencapai tingkat 3 sebanyak 4 siswa, tingkat 2 sebanyak 9 siswa, dan tingkat 1 sebanyak 2 siswa, sehingga siswa dengan hasil belajar tinggi cenderung memiliki tingkat berpikir van Hiele pada tingkat 2.Siswa dengan hasil belajar sedang dapat mencapai tingkat 3 sebanyak 1 siswa, tingkat 2 sebanyak 12 siswa, tingkat 1 sebanyak 1 siswa, dan tingkat 0 sebanyak 3 siswa, sehingga siswa dengan hasil belajar sedang cenderung memiliki tingkat berpikir van Hiele pada tingkat 2.Siswa dengan hasil belajar rendah dapat mencapai tingkat 2 sebanyak 1 siswa, tingkat 1 sebanyak 1 siswa, dan tingkat 0 sebanyak 1 siswa, sehingga siswa dengan hasil belajar rendah memiliki tingkat berpikir geometri van Hiele yang bervariasi. Kata Kunci: Tingkat Berpikir Geometri, van Hiele, Segiempat, Hasil Belajar
ANALISIS HIGHER ORDER THINKING SKILL SISWA KELAS VII DALAM MENYELESAIKAN MASALAH SEGIEMPAT Ma'arifah, Rossasinensis Yarfa'ul; Susanto, S; Safrida, Lela Nur; Setiawan, Toto' Bara; Monalisa, Lioni Anka
Jurnal Edukasi Vol. 10 No. 1: Maret 2023 : Jurnal Edukasi
Publisher : Universitas Jember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/jukasi.v10i1.43697

Abstract

Merujuk pada kurikulum 13 yang menuntut siswa berpikir kritis, soal HOTS menjadi evaluasi tingkat berpikir siswa dalam menyelesaikan sebuah permasalahan. Kemampuan berpikir tingkat tinggi meliputi kemampuan menganalisis, mengevaluasi, serta mencipta. Tujuan dari penelitian ini adalah untuk mendeskripsikan kemampuan berpikir tingkat tinggi siswa kelas VII SMP dalam menyelesaikan masalah segi empat berdasarkan indikator yang telah disiapkan. Penelitian ini menggunakan penelitian deskriptif kualitatif. Metode pengumpulan data meliputi metode tes, wawancara, dan dokumentasi. Hasil penelitian ini, terdapat 12 siswa yang memenuhi indikator analisis yaitu mampu mengidentifikasi informasi yang diketahui dan ditanyakan dengan tepat, kemudian 15 siswa yang memenuhi indikator mengevaluasi dimana siswa mampu memilih solusi yang tepat untuk menyelesaikan masalah, dan 7 siswa yang memenuhi indikator mencipta yaitu mampu menjelaskan langkah penyelesaian dan dapat mengkreasikan ide untuk membuat solusi baru.Kata Kunci:HOTS, kemampuan menganalisis, mengevaluasi, mencipta
PROSES BERPIKIR SISWA TUNADAKSA CEREBRAL PALSY DALAM MENDEFINISIKAN BANGUN RUANG GEOMETRI Idhami, Tantri Cahya; Susanto, S; Yudianto, Erfan; Setiawan, Toto Bara; Monalisa, Lioni Anka
Kadikma Vol 9 No 2 (2018): Agustus 2018
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v9i2.9711

Abstract

Abstract.The process of thinking is mental activity that experiences disequlibrium, assimilation, accommodation or equilibrium to define, determine decisions and draw conclusions on a geometric problem. The purpose of the study was to determine the thinking process of quadruple cerebral palsy students to define geometric space. This research is a type of descriptive research through a qualitative approach. Data collection methods used are worksheets and interviews. The subject of the study was carried out to 2 students with cerebral palsy who were sitting in class VIII of the Extraordinary Daksa Middle School of the Disabled Children (SMPLB-D YPAC) Kaliwates-Jember. The results showed that both subjects experienced disequilibrium on topic I students' initial knowledge of geometrical space (prisms, beams and cubes), and assimilation on topic II related to similar examples of geometrical space (prisms, beams and cubes), before finally accommodation when paused before answering correctly the questions from the researcher and before retelling the answers that have been written when answering the questions on topic III which is the core of this research, that is knowing the thinking process of students tundaksa cerebral palsy in defining geometric space constructs (beam prisms and cubes). Keywords: The Process of Thinking, Cerebral Palsy Students, Geometry
PENERAPAN MODEL PEMBELAJARAN MISSOURI MATHEMATICS PROJECT (MMP) UNTUK MENGATASI KESALAHAN SISWA MENYELESAIKAN SOAL SUB POKOK BAHASAN SEGITIGA DAN SEGIEMPAT KELAS VII D SMP NEGERI 7 JEMBER TAHUN AJARAN 2012/2013 Susanti, Meri Ismi; Hobri, H; Setiawan, Toto' Bara
Kadikma Vol 5 No 2 (2014): Agustus 2014
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v5i2.1360

Abstract

Abstrack: This research type of this research is Classroom Actions Research which consist of two cycles, there are two class in each cycles. The data collection methods are interview, documentation, observation, and test. The purpose of this research is to reduce students’ mistake during solving problem in the triangle and quadrilateral topic. We will use Missouri Mathematics Project (MMP) learning model in each meetings. The subject of research is students of VII D class SMPN 7 Jember in academic year 2012/2013. The data we analys are teacher’s and students’ learning activities, the percentage of student’s mistake, and the effectivity of MMP. The result of research indicate that the result of learning activity increase of student’s activity of cycle I reach 82,4% and cycle II reach 92,0%. While the student’s mistakes of final test at cycle I reach 50,5% and cycle II 28,6%. So, the mode of teaching can increase student’s activity and decrease the student’s mistakes. Key Words: Missouri Mathematics Project, triangle and quadrilateral topic, students’ activities, percentage of student’s mistake
ANALISIS PEMAHAMAN SISWA BERDASARKAN TEORI APOS MATERI BALOK DAN KUBUS DITINJAU DARI KECERDASAN EMOSIONAL Saputri, Adhila Nuril; Sunardi, S; Setiawan, Toto Bara
Kadikma Vol 9 No 3 (2018): Desember 2018
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v9i3.10672

Abstract

Abstract. This research aims to describe students’ comprehension based on apos theory on the theme “cuboid and cube” from the perspective of emotional quotient of grade IX A students SMP Negeri 1 Semboro. This research is a descriptive study with qualitative approach. APOS theory assumes that understand of mathematical concept is a result of construction or reconstruction of mathematical object. Construction or reconstruction is done by action, processes, and object that are coordination in a scheme to solve the problems. So, we can know comprehension student of mathematical concept can use APOS theory. Subjects of this study were 6 students consist of 2 students with high emotional quotient, 2 students with moderate emotional quotient and 2 students with low emotional quotient. Data collection obtained with emotional quotient questionnaires, test, and interview. Based on the results of the analysis, the results can be obtained that students with high emotional quotient has reached the stage of action, process, object, and scheme; the comprehension of students with moderate emotional quotient has reached the stage of action, process, and object; the comprehension of students with low emotional quotient just has reached the stage of action, has not reached the process, object, and scheme. Keywords: Comprehension, APOS theory, Emotional quotient, Cuboid and Cube.
PROSES BERPIKIR KREATIF SISWA TUNANETRA DALAM MENGKONSTRUK BANGUN DATAR BERBANTUAN ALAT PERAGA TANGRAM MENURUT TAHAPAN WALLAS Arifani, Ulfa; Setiawan, Toto' Bara; Sunardi, Sunardi; Sugiarti, Titik; Monalisa, Lioni Anka
Kadikma Vol 10 No 2 (2019): Agustus 2019
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v10i2.17396

Abstract

This study aims to describe the creative thinking process of blind students in constructing plane figure assisted by tangram props according to the stages of Wallas. The research subjects were three blind students of VIII grade SLB-TPA Negeri 1 Branjangan. Data collection methods used were test questions constructing plane figure and interviews. Based on the analysis of the results of tests and interviews shows that students of S1, S2, S3 through all the processes of creative thinking according to the Wallas’s stages include the preparation stage, the incubation stage, the illumination stage, and the verification stage when resolving problems constructing plane figure. At the preparation stage, blind students tend to lack understanding of the initial information such as explaining the problem given. At the incubation stage, blind students need a long time to do the process of pondering thinking about solving the problem in question. At the illumination stage, blind students are able to get two or more different ideas for completion. Blind students tend to use trial and error to find an idea. At the verification stage, blind students tend to re-check the answers obtained to reassure the answers are correct.
ETNOMATEMATIKA GERABAH BAYAT DESA MELIKAN KLATEN SEBAGAI BAHAN PEMBELAJARAN MATEMATIKA Suryandari, Nurlayli Dewi; Setiawan, Toto Bara; Sunardi, S; Setiawani, Susi; Yudianto, Erfan
Kadikma Vol 9 No 2 (2018): Agustus 2018
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v9i2.9951

Abstract

Abstract. The purpose of this study was to explore ethnomatematics on Bayat pottery, production of Bayat Pottery and produce student teaching materials in the form of test packages. This research is qualitative research with ethnographic approaches. The methods of data collection used are observation and interview. 3 people were chosen as research subjects. The ethnomatematics include counting activities, numerical activities, and measuring activities. This study focused on determining the amount of base material for making mixtures or lempung, determining the size of the pottery, determining the ratio of the diameter of the base and lid, determining the shape. Mathematical concepts that emerge are the concept of direct proportion, number sequence, similarity, congruence, and space. Keywords: ethnomatematics, bayat pottery, teaching materials.
PENINGKATAN HASIL BELAJAR DAN AKTIVITAS SISWAMELALUI PENERAPAN MODEL BELAJAR BRUNERPADAPOKOK BAHASAN SEGITIGA KELAS VII SMPLB-B(TUNA RUNGU) YAYASAN TPA JEMBERSEMESTER GENAP TAHUNAJARAN 2012/2013 Harry, Fajar; Susanto, S; Setiawan, Toto' Bara
Kadikma Vol 5 No 2 (2014): Agustus 2014
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v5i2.1355

Abstract

Abstract.The purpose of this research are 1) todetermine the application ofmathematical learningusinglearning theoryBruner. 2) to determine theactivity ofstudentsin theteachingandlearningprocessby usinglearningBrunerintriangletopic. Brunertheorystepsconsistof1) information, 2) transformation, 3) andevaluation. transformationhas3stages:enaktif, iconic, andsymbolic. targetedresearch in SMPLB-B Yayasan TPA Jember 2012/2013 academic year. The data collection method applied on this research are observatian, interview, test, and dokumentation. Data analysis that is used in this research are1) implementation of learningBruner, 2) the percentageof teachersandstudentsin teaching and learning. From the observation result, teaching and learning process pertained to the active criteria and increased from cycle 1 to cycle 2. From the final test in cycle 1, the value of classical completeness is 0% and the value of classical completeness in cycle 2 is 80%. The classical completness in cycle 2 increased compared with the first cycle. So, from these result it can be concluded that the application of Brunerlearningusinglearning theoryintriangulartopicscanincreasestudents'mathachievement. Key Words:Brunertheory,Lesson plan, student worksheet, student homework.
KARAKTERISTIK BERPIKIR GEOMETRI SISWA PADA TINGKAT VISULISASI, ANALISIS, DAN DEDUKSI INFORMAL BERDASARKAN TEORI VAN HIELE Khumayroh, Alfatikha Anik; Yudianto, Erfan; Setiawan, Toto' Bara; Susanto, Susanto; Pambudi, Didik Sugeng
Kadikma Vol 10 No 3 (2019): Desember 2019
Publisher : Department of Mathematics Education , University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/kdma.v10i3.17402

Abstract

Geometry is one of the material in mathematics that is studied by students. In measuring students' geometry abilities, one of the efforts can use van Hiele's theory. This research is a descriptive study with the subject of the research is grade IX D students of SMP Negeri 2 Jember. The purpose of this study is to describe the characteristics ofthinking geometry students'at the level of visualization, analysis, and informal deduction. Research subjects were 5 students with 2 students at the visualization level, 2 students at the analysis level, and 1 student at the level informal deduction. The results of this study indicate that (1) Visualization subjects can identify, classify, compare and determine the types ofshapes quadrilateralbased on their visual appearance and can draw with labeling simple. (2) The subject of analysis can identify, analyze, classify, define and compare quadrilateral shapes according to the relationship between their properties. (3) The subject of informal deduction can define and compareshapes quadrilateralby looking at the relationship between quadrilateral shapes
Co-Authors Abi Suwito Aini, Novi Rosidatul Ambarwati, A Amirullah, Iqbal Anggreini, Dinar Adi Annisatul Maghfiroh Aprilia, Erly Dwi Arif Fatahillah Arifani, Ulfa Arika Indah Kristiana Arsita, Putri Ayu Aryanto, Eko Wahyu Bunga Ayu Desy Permatasari, Bunga Ayu Cahyani, Ika Arum D. Dafik Devira Ayu Nurandari, Devira Ayu Dian Kurniati Didik Sugeng Pambudi Dinawati Trapsilasiwi Diyanah, Hidayatud Dyah Ayu Harini Elok Rahmawati Erfan Yudianto Ervin Oktavianingtyas Faiqotul Himmah Fajar Harry Fenni Octavianti Fuada, Maya Sofiatul Hajar Istiqomah Hobri Idhami, Tantri Cahya Ira Noviliya Noviliya istiqomah, puji nur Jatmiko, Dhanar Dwi Hary Jhahro, Kholif Fatujs Karimah Salasari Karimah Salasari Khofifah, Lita Khumayroh, Alfatikha Anik Kusumawati, Nurita Laili, Nuryatul Laksananti, Putri Meilinda Lestari, Deninta Dwi Ayu Linda Fitasari, Linda Lioni Anka Monalisa, Lioni Anka Ma'arifah, Rossasinensis Yarfa'ul Mahanurani, Idawati Marie Afiani Martina, Agfa Masyhudi, Muhammad Ali Meri Ismi Susanti Miftahul Jannah Mika Wahyuning Utami, Mika Wahyuning Mufidah, Diana Mulyo, Robbi Nur N Niken Niken Shofiana Dewi Nila Lestari Nila Lestari Novita Cahya Mahendra Nur Izzatun Nisa Liliyan Nur Izzatun Nisa Liliyan Octafia, Yuni Rafiantika Megahnia Prihandini Rahmawati, Enggita Randi Pratama Murtikusuma Reza Ambarwati Ridho Alfarisi, Ridho Robiatul Adawiyah Rofiq, Anita Nur Romadhoni, Linda Roni Setyawan S Suharto S Sunardi S Supriyono S Susanto Sahrita, Titis Saputri, Adhila Nuril Sha’adhah, Ziadatus Sholekhah, Irmadatus sholihin, akhmad Sidik, Zafar Muhamad Sri Wahyu Suharto Suharto Sunardi Sunardi Sunardi Sunardi sunardi sunardi Sunardi, Sunardi Suryandari, Nurlayli Dewi Susanto Susanto Susanto, Anas Susi Setiawani Titik Sugiarti Umami, Anggi Nabilla Vita Heprilia Dwi Kurniasari, Vita Heprilia Dwi Wayuda, Irma Amelinda Weny Wijayanti, Weny Y. Danni Prihartanto Yufrida Septi Nindya Yuli Farida, Yuli Zunita Khuna Triani