Claim Missing Document
Check
Articles

Sistem Deteksi Dini Glaukoma Berbasis Pencintraan Fundus Suwandhi, Adhisty Putrina; Susilo, Mochammad Hilmi; Masykur, Muhammad Fadhel Affandi; Magdalena, Rita; Fathurrahman, Muhammad Hanif; Saidah, Sofia
eProceedings of Engineering Vol. 12 No. 4 (2025): Agustus 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Glaukoma merupakan penyebab kebutaan permanen kedua terbanyak di dunia setelah katarak, dan menjadi ancaman serius bagi kesehatan mata, khususnya pada lansia. Penyakit ini sering berkembang tanpa gejala pada tahap awal, sehingga banyak kasus baru terdeteksi saat kondisi sudah parah dan kerusakan saraf optik bersifat permanen. Oleh karena itu, deteksi dini glaukoma menjadi sangat penting guna mencegah kebutaan yang tidak dapat dipulihkan. Penelitian ini bertujuan untuk mengembangkan sistem deteksi dini glaukoma berbasis teknologi deep learning dengan memanfaatkan Convolutional Neural Network (CNN) untuk mengklasifikasikan citra fundus retina ke dalam dua kategori, normal dan glaukoma. Empat arsitektur CNN digunakan dan dibandingkan performanya, yaitu ResNet50, EfficientNetB0, MobileNetV2, dan VGG16, dengan pendekatan fine-tuning hyperparameter untuk memperoleh hasil optimal. Dataset yang digunakan merupakan kombinasi dari SMDG19 serta citra tambahan yang diperoleh melalui pantoscopic ophthalmoscope yang terintegrasi dengan smartphone. Dari hasil pengujian, arsitektur VGG16 memberikan performa terbaik dengan akurasi mencapai 86,7% dan waktu pemrosesan gambar kurang dari 5 detik. Hasil ini menunjukkan bahwa sistem yang dikembangkan berpotensi menjadi alat bantu diagnosis yang cepat, efisien, dan mudah diimplementasikan, khususnya di daerah dengan keterbatasan tenaga medis dan teknologi kesehatan.Kata Kunci: glaukoma, deep learning, citra fundus, CNN, deteksi dini, VGG16, ophthalmoscope
Klasifikasi Cuaca Menggunakan Convolutional Neural Network Malardy , Muhammad Andriyansyah; Magdalena, Rita; Saidah, Sofiah
eProceedings of Engineering Vol. 12 No. 4 (2025): Agustus 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cuaca merupakan salah satu faktor penting yang memengaruhi berbagai aktivitas manusia sehari-hari. Perubahan cuaca yang tidak menentu dapat berdampak pada sektor transportasi, pertanian, hingga penanggulangan bencana. Oleh karena itu, dibutuhkan sistem yang mampu mengklasifikasikan kondisi cuaca secara otomatis dan akurat. Salah satu solusinya adalah dengan memanfaatkan teknologi pengolahan citra dan kecerdasan buatan, khususnya menggunakan metode Convolutional Neural Network (CNN), yang mampu mengenali pola dalam gambar untuk menentukan jenis cuaca seperti cerah, berawan, atau hujan. Dalam penelitian ini, digunakan arsitektur CNN bernama MobileNetV2 yang dirancang untuk menghasilkan model yang ringan dan efisien, namun tetap memiliki tingkat akurasi yang tinggi. MobileNetV2 dipilih karena cocok digunakan dalam perangkat dengan kemampuan komputasi terbatas dan telah terbukti efektif dalam klasifikasi gambar. Proses yang dilakukan meliputi pengumpulan data dari situs Kaggle, pengolahan gambar agar memiliki ukuran seragam, pelatihan model menggunakan data latih, dan pengujian kinerja model untuk mengukur tingkat keberhasilannya dalam mengenali gambar cuaca. Dataset yang digunakan terdiri dari 768 gambar yang dibagi ke dalam tiga kategori: cerah (253 gambar), berawan (300 gambar), dan hujan (215 gambar). Sebanyak 80% data digunakan untuk pelatihan model, dan 20% sisanya untuk pengujian. Hasil terbaik diperoleh ketika menggunakan pengaturan: optimizer Stochastic Gradient Descent (SGD), learning rate 0,01, batch size 32, dan epoch 50. Dengan kombinasi tersebut, sistem berhasil mencapai akurasi sebesar 96,10%, dengan nilai presisi, recall, dan F1-score yang juga tinggi. Hal ini menunjukkan bahwa MobileNetV2 mampu memberikan hasil klasifikasi cuaca yang akurat dan efisien. Kata kunci— Klasifikasi Cuaca,Convolutional Neural Network (CNN), MobileNetV2, Stochastic Gradient Descent (SGD), Learning Rate, Batch Size.
Experimenting with the Hyperparameter of Six Models for Glaucoma Classification Ilham, Muhammad; Prihantoro, Angga; Perdana, Iqbal Kurniawan; Magdalena, Rita; Saidah, Sofia
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26331

Abstract

Glaucoma, being one of the leading causes of blindness worldwide, often presents without noticeable symptoms, making early detection crucial for effective treatment. Numerous studies have been conducted to develop glaucoma detection systems. In this particular study, a glaucoma detection system using the CNN method was developed. The models employed in this study include AlexNet, Custom Layer, MobileNetV2, EfficientNetV1, InceptionV3, and VGG19. For training, an augmented RIM-ONE DL dataset was utilized. Hyperparameter experiments were conducted to determine the most optimal parameters for each model, specifically testing batch size, learning rate, and optimizer. The hyperparameter optimization process yielded the optimal parameters for each model. However, it is important to note that the MobileNetV2, InceptionV1, and VGG19 models exhibited signs of overfitting in the training graph results. Among the models, the custom layer model achieved the highest accuracy of 93%, while InceptionV3 attained the lowest accuracy at 83.5%. Testing of the models was performed using data from Cicendo Eye Hospital and the RIM-ONE DL testing dataset. Based on the testing results, it was found that InceptionV3 outperformed the other models in predicting images accurately. Therefore, the study concluded that high accuracy in training does not necessarily indicate superior performance in testing, particularly when limited variation exists in the training dataset.
Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture Pramudhita, Dyah Ajeng; Azzahra, Fatima; Arfat, Ikrar Khaera; Magdalena, Rita; Saidah, Sofia
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26341

Abstract

Strawberry is a plant that has many benefits and a high risk of being attacked by pests and diseases. Diseases in strawberry plants can cause a decrease in the quality of fruit production and can even cause crop failure. Therefore, a method is needed to assist farmers in identifying the types of diseases in strawberry plants. Currently, there are many methods to assist farmers in identifying types of disease in plants, including strawberry plants. In this study, a system is proposed to be able to detect strawberry plant diseases by classifying the disease based on healthy and diseased strawberry leaf images. The proposed system is the Convolutional Neural Network (CNN) algorithm using MobileNetV3-Large and EfficientNet-B0 models to train pre-processed datasets. The results of this study obtained the best accuracy reaching 92.14% using the MobileNetV3-Large architecture with the hyperparameter optimizer RMSProp, epochs 70, and learning rate 0.0001. The percentage of the evaluation model using MobileNetV3-Large for precision, recall, and F1-Score achieved 92.81%, 92.14%, and 92.25%.  Whereas in the EfficientNet-B0 architecture, the best accuracy results only reach 90.71% with the hyperparameter optimizer Adam, 70 epochs, and a learning rate of 0.003. Then, the precision, recall, and F1-scores for EfficientNet-B0 reached 92.65%, 90.00%, and 90.37%. Overall, it presents fairly good results in classifying strawberry leaf plant disease. Furthermore, in future work, it needs to obtain higher accuracy by generating more datasets, trying other augmentation techniques, and proposing a better model.
Handwritten Hiragana Letter Detection Using CNN Fernandi, Arya; Sa'idah, Sofia; Magdalena, Rita
JOIV : International Journal on Informatics Visualization Vol 8, No 3-2 (2024): IT for Global Goals: Building a Sustainable Tomorrow
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3-2.3035

Abstract

Hiragana is one of the primary alphabets used in Japanese. Hiragana is a phonetic symbol; each letter represents one syllable. Hiragana letters are formed from curved lines and strokes. However, detecting Hiragana letters causes many errors because people still rely on their vision to detect the letters, especially people familiar with them for the first time. It will be difficult and not very clear to read the letters. Therefore, a Convolutional Neural Network (CNN) method is used to detect handwritten Hiragana letters and help people who first get to know Hiragana letters when the letters are too complicated for human eyes to detect. This research uses the YOLOv8 model as a handwritten Hiragana letter detection algorithm. The Hiragana letters to be detected are basic letters with 46 characters. This research uses the YOLOv8 model run on Google Collaboratory with the Ultralytics library version 8.0.20 using the Python programming language. The dataset is collected from the internet and annotated using the Roboflow framework and dataset 4600 Hiragana letters. From the test results, the best model is YOLOv8l using SGD optimizer and learning rate 0.01 with a precision value of 98.5%, recall value of 95.7%, f1-score value of 97.1%, and mAP value of 95.5%. In the future, we aim to expand the number of datasets and employ a broader range of hyperparameter values to optimize the classification precision and accuracy of the Hiragana Letter Detection system.
Sistem Deteksi Kecacatan Ban Dengan Convolutional Neural Network Prayoga, Krisna; Magdalena, Rita; Sa'idah, Sofia
eProceedings of Engineering Vol. 10 No. 3 (2023): Juni 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Produksi kendaraan setiap tahun semakin meningkat, Setiap tahunnya pabrik kendaraan memproduksi ribuan kendaraan untuk memenuhi kebutuhan pasar disetiap negara. Ban adalah komponen sangat penting dalam suatu kendaraan, ban yang tidak maksimal atau cacat sering kali menimbulkan kecelakaan mulai dari kecelakaan ringan hingga fatal, memilih ban yang baik sangat dibutuhkan agar ketika kendaraan sedang melaju tidak menimbulkan kecelakaan seperti pecah ban atau ban tergelincir. Tujuan dari penelitian ini adalah melakukan analisis kerja sistem dalam mengidentifikasi ban yang dalam kondisi bagus dengan ban dalam kondisi rusak atau cacat. Penelitian Tugas Akhir ini meneliti bagaimana cara memilih ban yang baik dengan mengklasifikasikan ban kedalam 2 kategori yaitu ban yang bagus dengan ban yang cacat menggunakan metode Convolutional Neural Network (CNN) menggunakan CNN lima layer dan menguji paramter yang akan digunakan kedalam sistem untuk mengetahui parameter yang terbaik agar menghasilkan akurasi yang tinggi. Di dalam penelitian ini bisa diketahui hal-hal yang mempengaruhi performansi sistem, akurasi terbaik yang diperoleh dari penelitian ini yaitu 88% dengan menggunakan 1.039 sampel citra serta menggunakan parameter size 224x224, Optimizer Adam, Learning Rate 0.0001, Epoch 80, dan Batch size 16.
Deteksi Aritmia Menggunakan Algoritma Deep Neural Network (Dnn) Pada Sinyal Elektrokardiogram Nugraha, M.Fajar Zulvan; TSP, Hilman Fauzi; Magdalena, Rita
eProceedings of Engineering Vol. 10 No. 5 (2023): Oktober 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jantung merupakan organ vital manusia yangmemiliki fungsi untuk memompa darah ke seluruh tubuh. Salahsatu penyakit umum pada jantung yang terjadi pada manusiayaitu Aritmia. Aritmia jantung atau biasa dikenal dengan iramajantung abnormal adalah penyakit kelainan pola iramajantung. Aritmia menyebabkan jantung tidak mampu bekerjasecara maksimal sehingga bisa menyebabkan sakit dan nyeripada dada dikarenakan irama yang tidak menentu. Padapenelitian sebelumnya, deteksi Aritmia telah berhasil dilakukandengan menggunakan metode klasifikasi ANN. Namundemikian, proses training data dengan metode ANNmembutuhkan waktu yang lama. Untuk mengatasi hal tersebut,DNN dikenalkan sebagai salah satu metode klasifikasi yangmenawarkan akurasi yang tinggi dengan waktu proses trainingyang lebih singkat. Pada penelitian ini dirancang suatu sistemdeteksi Aritmia dengan menggunakan pengembanganalgoritma Deep Neural Network (DNN) yang mendukungpeningkatan akurasi klasifikasi Aritmia denganmengklasifikasikan sinyal EKG. Pada penelitian inimenggunakan dataset dari DataHub.io dengan jumlah 444 data.Pada Tugas Akhir ini, dataset yang didapat dari DataHub.iodibagi kedalam dua kelas yaitu Aritmia dan Tidak Aritmia.Kemudian akan dilakukan beberapa skenario pengujian gunamencari hyperparameter terbaik. Validasi akurasi terbaik yangdidapat sebesar 71,91% dan validasi loss sebesar 0.6647.Kata kunci—Aritmia, Deep Neural Network (DNN),Elektrokardiogram (EKG)
Mendeteksi Kematangan Buah Kelapa Sawit Menggunakan Convolutional Neural Network Deep Learning Triyogi, Raihan; Magdalena, Rita; Hidayat, Bambang
Jurnal Nasional SAINS dan TEKNIK Vol. 1 No. 1 (1): December 2023
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/jnst.v1i1.6732

Abstract

rak Minyak kelapa sawit adalah bahan utama dalam produksi minyak goreng dan juga digunakan dalam produksi sabun, lilin, kosmetik, tinta, dan pasta gigi. Minyak kelapa sawit dihasilkan dari buah sawit yang telah matang. Penentuan kematangan kelapa sawit dilihat dari bentuk dan warnanya, yang bisa ditentukan oleh orang yang berpengalaman. Untuk menghindari ketergantungan terhadap seseorang serta mempercepat proses deteksi kematangan, dirancang sistem dengan metode Convolutional Neural Network (CNN) untuk melakukan klasifikasi kematangan buah kelapa sawit. Tugas Akhir ini menggunakan dataset buah kelapa sawit yang terdiri dari 3 kelas, kelas mentah, matang dan busuk dengan masing-masing kelas terdapat 100 citra sehingga total terdapat 300 citra. Dataset tersebut digunakan sebagai data train, data validation, dan data test dengan distribusi persentase sebanyak 65% data train, 20% data validation, dan 15% data test. Penelitian ini menggunakan CNN arsitektur MobileNet. Arsitektur MobileNet digunakan karena kompleksitasnya rendah dan arsitektur ini sederhana. Pada Tugas Akhir ini pengujian dilakukan menggunakan 5 skenario untuk mendapatkan skenario terbaik. Skenario terbaik yang didapatkan dalam penelitian ini dengan menggunakan citra berukuran 224 × 224 pixel, optimizer RMSprop, learning rate 0.0001, epoch 50, dan batch 16. Dari skenario terbaik didapatkan hasil performansi terbaik yaitu akurasi data latih 100% dengan loss 0,0349, akurasi data uji 100% dengan loss 0,0569, dan nilai recall 100%, precision 100%, dan f1-score 100%.
Co-Authors A F Akbar Abel Bima Wiratama Achmad Rizal Adham Nurjati Adinda Maulida Agung Aditama Putra Agustina Trifena Dame.S AGUSTINA, REGITA Ahmad Zendhaf Aldo Setiawan Alva Rischa Qhisthana Pratika Andria Sufy Angga Prihantoro Ardhi Fibrianto Arfat, Ikrar Khaera Arianto Sirandan Arintyo Archamadi Ayu Putu Wida Vanhita Azzahra, Fatima Bagas Farhan Hadyantoro Bagus Robbiyanto Bambang Hidayat Bambang Hidayat Bayuaji Kurniadhani Brian Adam Danding Adhi Priutomo Davita Nadia Fadhilah Dea Sifana Ramadhina Dewa Nyoman Indra Dewi Siskawati Dian Ayu Nurlitasari Dimas Frandisyah Putra Donny Janu Sundoro Dwi Anggreni Novitasari Dyah Ajeng Pramudhita Dyah Ayu Pratiwi Efri Suhartono Eko Susatio Eky Yuliansyah Eriel Mar Estananto Faizhal Rifky Alfaris Fathurrahman, Muhammad Hanif Fatima Azzahra FAUZI FRAHMA TALININGSIH Fauzi, Muhammad Ilham Febriani Ruming Sari Fernandi, Arya Firmanda Robi Firmansyah Patriandhika Fitya Nur Fadhilah Galih Surya Gede Hari Yogiswara Gusty Aditya Arrazaq HARSONO, ALI BUDI Herdian Anantya Risma Hilman Fauzi, Hilman I Dewa Gede Agung Kurniawan I Gusti Agung Dian Wintara I Nyoman Apraz Ramatryana I Nyoman Apraz Ramatryana I NyomanApraz Ramatryana Ibnu Da'wan Salim Ibnu Da’wan Salim Ubaidah Ibnu Da’wan Salim Ubaidah Ignatius Yoslan Kurniawan Ikhwanda, Alfan Ikrar Khaera Arfat Ilma Rahma Dewi Imanuel Boyke Nainggolan Immanuel Rayuzi Pandapotan Sinaga Indrafaqih Eskamara Inung Wijayanto Iqbal Kurniawan Perdana Irham Bani Alfafa Ivan Prayoga Prawiro Ivandy Chaniago Jangkung Raharjo Jonthala Tambunan Koredianto Usman Kurnia Khafidhatur Rafiah Ledya Novamizanti Lugina Perceka Putri M.Aldia Abilisa Mahendra, Dio Maisaroh Agustina Rahayu Malardy , Muhammad Andriyansyah Masykur, Muhammad Fadhel Affandi Misbakhul Munir Muhamad Rokhmat Isnaini MUHAMMAD ADNAN PRAMUDITO Muhammad Akhyar Ghifari Muhammad Ardhi Prakasa Muhammad Bayu Adinegara Muhammad Fadly Mustakim Muhammad Ihsan Fadhil Muhammad Ilham Muhammad Ilham Muhammad Ilham Fauzi Muhammad Najiburahman Muhammad Tezar Muhammad Yuqdha Faza Nabila Herman Naufal Adi Gifran Nidaan Khofiya Nor Kumalasari Nor Kumalasari Caecar Nor Kumalasari Caecar Pratiwi Nor Kumalasari Caesar Pratiwi Nugraha, M.Fajar Zulvan Nur Andini Nur Ibrahim NURFAJAR, FEBI Obed Simanungkalit Octavian Putera Kesuma Sugeng Olyvia Fernanda Soedradjat Perdana, Iqbal Kurniawan PERDANI, WAHYUNI RIZKY Pramudhita, Dyah Ajeng Prayoga, Krisna Prayudi, Yoshi Prihantoro, Angga Putra, Akbar Trisnamulya Putri Andriani R Ricki Juniansyah R Yunenda Nur Fu'adah R. Rumani R. Rumani R. Yunendah Nur Fu’adah Raditiana Patmasari Rafid Fakhri Rahmad Hidayatullah Salam Raihan Nur Fadhlillah Rama Arjun Setiawan Ramdhan Nugraha Ratri Dwi Atmaja Renny Rahmawati Reyfaldi Wahyu Pradana Reyhan Radifan Jordy Rezki Ariz Rahadian Ricardo Ricardo Richard Bina Jadi Simanjuntak Ridwan Firdaus Rifqi Muhammad Fikri Rissa Rahmania Rizki Muhammad Iqbal Rizqi Surya Utama Rosyita Ayuning Mauludiya Sa'idah, Sofia Sa’idah, Sofia Saidah, Sofiah Sari, Febriani Ruming Sayidia Rizki Arfina Sean Alexander Suryaman Septian Eko Kuncahyono Shimon Anterio Armando Sinaga Sofia Sa'idah Sofia Sa’idah SOFIA SAIDAH Sofia Sa’idah Steven Palondongan Suci Aulia Sugondo Hadiyoso Susilo, Mochammad Hilmi Suwandhi, Adhisty Putrina Suwitrisna Putra Syafiq Hilmi Abdullah Syamsul Rizal Tahta Restu Adiguna Tamardi Pranata Tampubolon Tauhid Nur Azhar Teguh Dian Arifandi Tri Siswanto Triyogi, Raihan Twinarya Bagus Wibawa Varian Mohammad Sutama Yohana Karina Candra Sari Yunendah Fu’adah