This paper presents bidirectional long short-term memory (BiLSTM) OptiFlow, an optimized deep learning model designed to predict the financial health of cooperatives using key financial ratios: debt to equity ratio (DER), net profit margin (NPM), and return on equity (ROE). By leveraging a BiLSTM architecture combined with an optimal decayed learning rate, this model aims to enhance forecasting accuracy. The proposed model was tested against three established methods—recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)—and evaluated using mean absolute error (MAE), mean absolute percentage error (MAPE), and mean squared error (MSE) metrics. Results indicate that BiLSTM OptiFlow outperforms the other models across all key indicators. This research offers a robust approach to cooperative financial forecasting, with significant implications for decision-making processes in cooperative management.