Claim Missing Document
Check
Articles

Pengenalan Lirik Lagu Otomatis Pada Video Lagu Indonesia Menggunakan Hidden Markov Model Yang Dilengkapi Music Removal Luhfita Tirta; Joan Santoso; Endang Setyati
Journal of Information System,Graphics, Hospitality and Technology Vol. 4 No. 2 (2022): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v4i2.225

Abstract

Video sangat penting untuk membuat informasi berupa suara dalam video agar dapat dipahami oleh semua kalangan masyarakat, dan orang-orang yang memiliki masalah pendengaran yaitu dengan cara paling alami terletak pada penggunaan subtitle. Oleh karena itu, peneliti membuat pengenalan lirik lagu otomatis pada video lagu Indonesia menggunakan Hidden Markov Model yang dilengkapi music removal. Dalam pengenalan suara lebih akurat dilakukan dengan menggunakan model HMM yang dilengkapi oleh MFCC (kata yang cocok 81% dan WER 19%) dibandingkan dengan model LDA + MFCC (kata yang cocok 71% dan WER 29%) dan DWT + MFCC (kata yang cocok 61% dan WER 39%). Jumlah kata dan sample suara pada library Bahasa Indonesia yang digunakan cukup sangat mempengaruhi MFCC dan CMU Sphinx-4, Nada pada inputan lagu yang akan diproses CMU Sphinx-4 juga sangat berpengaruh pada tingkat keberhasilan, dikarenakan CMU Sphinx-4 sangat sensitif dengan nada yang terlalu tinggi dan noise yang ada pada inputan lagu tersebut sehingga peneliti menambahkan fitur ekstraksi pada suara yaitu menggunakan MFCC. Dalam hal ini menggunakan dataset kecil terlebih dahulu untuk memastikan metode Hidden Markov Model yang dilengkapi MFCC dan CMU Sphinx-4 dapat berjalan dengan baik, Dari penelitian beberapa peneliti sebelumnya, maka hasil akhir yang diperoleh dengan menggunakan metode HMM yang dilengkapi oleh MFCC dan CMU Sphinx-4 dalam penelitian ini mendapatkan hasil akurasi training 78% dan testing 81% kecocokan kata pada video lagu.
Aspect based Sentiment Analysis Aduan Mahasiswa UMSIDA Dimasa Pandemi Menggunakan LSTM Bayu Anggara Putra; Yosi Kristian; Esther Irawati Setiawan; Joan Santoso
Intelligent System and Computation Vol 4 No 1 (2022): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v4i1.229

Abstract

Banyaknya data aduan Mahasiswa Universitas Muhammadiyah Sidoarjo (UMSIDA) yang terdampak wabah pandemi Covid19, dengan pemberlakuan pembatasan kegiatan masyarakat (PPKM). UMSIDA membentuk sebuah tim yang diberi nama Umsida Covid-19 Command Center (UCCC), dengan tujuan pelaksanaan program pecegahan dan aksi penanganan Covid-19, dengan harapan peneliti ingin mempermudah penyampaian informasi / aduan mahasiswa, khususnya terhadap tim UCCC sebagai bahan pertimbangan dalam melakukan suatu keputusan untuk menghadapi pandemi covid saat ini. Multi aspect sentiment analysis menghadirkan sesuatu yang baru, untuk memahami pendapat dan penilaian pengguna yang diungkapkan secara online. Dengan tujuan untuk mengklasifikasikan teks subjektif dengan memberi label polaritas, Pembentukan representasi vektor kata menggunakan Word Embedding Global Vector (Glove) dilakukan secara kombinasi dengan pelatihan analisis sentiment dengan klasifikasi berbasis Long Short Term Memory (LSTM). Pemodelan aduan mahasiswa dilakukan untuk mendapatkan representasi vektor menggunakan LSTM. Di sini, setiap kata dari kalimat menempati satu langkah pemrosesan LSTM, dan output dari kata terakhir digunakan sebagai ekspresi kalimat. Hasil dari penelitian menggunakan aduan mahasiswa bahasa Indonesia menunjukkan dari multi 3 aspect (ekonomi, pendidikan dan kesehatan) mendapatkan akurasi 82% dan 2 sentiment (positif dan negatif) mendapatkan akurasi 80% dengan demikian didapatkan nilai rata-rata Akurasi 81%. dapat disimpulkan akurasi tersebut bisa digunakan sebagai klasifikasi multi aspect dan sentiment analisis.
Handwritten Image Segmentation Carakan Madura Based Projection And Connected Component Labeling Miftah Farid; Joan Santoso; Endang Setyati
JOINCS (Journal of Informatics, Network, and Computer Science) Vol 3 No 2 (2020): November
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (36.703 KB) | DOI: 10.21070/joincs.v3i0.823

Abstract

At the time the Carakan Madura is currently found on sign of street names in the Madura region. It is also found in the historical sites and museum. However, many people do not understand about Carakan Madura because it is rarely used in daily life. There are many ways to keep Carakan Madura sustainable and not extinct, including preservation and maintenance of historical objects and also from education. The maintenance of these historical objects is usually carried out in museums and places where historical objects, including the Sumenep palace museum and Asta Tinggi. In the Sumenep palace museum, documents with Carakan Madura are still stored. In the Asta tinggi there are also stone carvings with the words Carakan Madura. There are other important things in the preservation of Carakan Madura, namely that Carakan Madura is included in the local content education curriculum for Madura language so that students can learn about Carakan Madura properly and well so students are not only knowing, but also understanding. For this reason, tools are needed so that students can more understand the Carakan Madura. The purpose of this research is to segment of the Carakan Madura handwritten image based on projection and connected component labeling. The results of this research can be concluded that the segmentation process in Carakan Madura handwriting has been successfully carried out in the form of the composing characters of Carakan Madura.
SISTEM REKOMENDASI OBAT PENGGANTI MENGGUNAKAN METODE CNN Aditya Dwi Aryanto; Joan Santoso; Devi Dwi Purwanto
Jurnal Sistem Cerdas dan Rekayasa (JSCR) Vol 3 No 1 (2021): Jurnal Sistem Cerdas dan Rekayasa (JSCR) 2021
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Widya Kartika (LPPM UWIKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (534.666 KB) | DOI: 10.61293/jscr.v3i1.337

Abstract

Dengan semakin banyaknya merk obat yang beredar dengan indikasi dan fungsi yang sama membuat dokter maupun apoteker dijadikan sebagai pilihan untuk memberikan obat yang tepat sesuai dengan penyakit yang diderita oleh pasien. Dengan semakin banyaknya merk dan jenis obat yang beredar saat ini, dimana tiap merk yang ada kadang kala memiliki bahan dasar dan indikasi yang sama ataupun berbeda. Selain itu, Obat-obatan yang tertera pada resep terkadang tidak dapat disajikan sepenuhnya karena berbagai alasan. Oleh karena itu, perlu dilakukan penggantian obat oleh apoteker. Penggantian obat tersebut dapat dilakukan oleh apoteker selama dokter mengizinkan penggantian dilakukan. Penelitian ini dilakukan untuk membuat rekomendasi obat pengganti saat obat tersebut dalam keadaan kosong. Penelitian ini menggunakan metode CNN. Hasil rekomendasi obat yang didapat, digunakan untuk mengurangi waktu proses pencarian obat yang dibutuhkan oleh pasien. Metode CNN digunakan untuk menentukan rekomendasi obat pengganti berdasarkan pemilihan obat yang paling ideal. Bahan obat yang direkomendasikan sama persis dengan obat-obatan sebelumnya yang dicari.
Ekstraksi Partitur Balok Monofonik untuk Instrumen Flute dengan CRNN dan CRF Stella Vania; Patrick Sutanto; Ricky Sutanto; Joan Santoso
Intelligent System and Computation Vol 5 No 1 (2023): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v5i1.218

Abstract

Notasi partitur balok bukanlah notasi yang mudah dibaca oleh pemula dalam dunia musik. Di sinilah Optical Music Recognition (OMR) dapat berperan. OMR merupakan sebuah pembelajaran mengenai komputer yang dapat mengenali objek dalam partitur balok. Dengan adanya program yang menerapkan OMR dan memberikan output dengan format yang mudah dipahami oleh pengguna, maka pemula dalam dunia musik dapat terbantu dalam membaca partitur not balok. Karya ilmiah ini dibuat dengan pendekatan deep learning dalam beberapa arsitektur. Dataset yang digunakan adalah Camera-PrIMuS yang terdiri dari dataset gambar sebaris partitur musik dan juga ground-truth per objek pada gambar yang bersangkutan. Arsitektur yang digunakan adalah CRNN, CRNN-CRF, dan Attention. Dari ketiga arsitektur tersebut, hasil terbaik diperoleh pada aristektur Attention dengan symbol error rate (SER) sekitar 9%, diikuti dengan CRNN dengan SER sekitar 84%, dan CRNN-CRF yang berdasarkan hasil uji coba tidaklah cocok untuk OMR dengan nilai loss yang tidak kunjung turun dalam proses training. Arsitektur Attention secara garis besar terdiri dari blok encoder dan decoder. Encoder berfungsi untuk menerima input gambar dan melakukan encoding terhadap gambar tersebut. Hasil encoding kemudian diterima oleh decoder yang berperan untuk melakukan decoding dan memprediksi sequence selanjutnya berdasarkan hasil encoding dari encoder. Dalam implementasinya program dapat menerima input berupa gambar selembar partitur penuh yang agak miring, maka program juga akan melakukan skew-correction dan pemotongan gambar per baris agar input dari pengguna dapat diproses oleh model. Output dari model yang masih berupa label-label prediksi akan diproses kembali agar menghasilkan not angka dan file MIDI yang relatif lebih mudah untuk dipahami oleh pengguna.
Deteksi Aspek Review E-Commerce Menggunakan IndoBERT Embedding dan CNN Syaiful Imron; Esther Irawati Setiawan; Joan Santoso
Intelligent System and Computation Vol 5 No 1 (2023): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v5i1.267

Abstract

Dengan semakin berkembangnya teknologi informasi, maka muncul istilah e-commerce dalam dunia bisnis. Pada e-commerce ada fitur review, pelanggan dapat memberikan review berupa teks, gambar, dan bintang. Review tersebut merupakan opini dari pelanggan terkait barang yang dibeli. Tetapi pada kebanyakan e-commerce tidak ada fitur kategori terkait review hal ini membuat calon pembeli kesusahan dalam menganalisa secara manual. Aspect-based sentiment analysis (ABSA) merupakan solusi dari permasalahan tersebut. ABSA memiliki tiga tugas salah satunya Aspect Category Detection yang memiliki fungsi untuk menggabungkan review pelanggan menjadi beberapa aspek dimana aspek-aspek tersebut sudah didefinisikan terlebih dahulu. Cukup banyak penelitian terkait Aspect Category Detection dengan mengunakan machine learning. Dari beberapa metode yang diuji, Convolutional Neural Network (CNN) merupakan metode terbaik. Selain itu penggunaan BERT sebagai word embedding menghasilkan output yang bagus baik dari pada word embedding konvensional. Penelitian ini menggunakan dataset dari e-commerce Bukalapak dengan 3114 review dan 6 aspek (Akurasi, Pengiriman, Kualitas, Harga, Pengemasan, dan Pelayanan). Berdasarkan ujicoba dengan menggunakan IndoBERT sebagai word embedding dan CNN untuk deteksi aspek, maka didapatkan akurasi sebesar 94,86%. Dengan demikian model tersebut dapat digunakan untuk deteksi aspek. Selain itu, metode CNN mendapatkan hasil yang lebih baik dari pada metode LSTM.
Indonesian Language Term Extraction using Multi-Task Neural Network Joan Santoso; Esther Irawati Setiawan; Fransiskus Xaverius Ferdinandus; Gunawan Gunawan; Leonel Hernandez
Knowledge Engineering and Data Science Vol 5, No 2 (2022)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v5i22022p160-167

Abstract

The rapidly expanding size of data makes it difficult to extricate information and store it as computerized knowledge. Relation extraction and term extraction play a crucial role in resolving this issue. Automatically finding a concealed relationship between terms that appear in the text can help people build computer-based knowledge more quickly. Term extraction is required as one of the components because identifying terms that play a significant role in the text is the essential step before determining their relationship. We propose an end-to-end system capable of extracting terms from text to address this Indonesian language issue. Our method combines two multilayer perceptron neural networks to perform Part-of-Speech (PoS) labeling and Noun Phrase Chunking. Our models were trained as a joint model to solve this problem. Our proposed method, with an f-score of 86.80%, can be considered a state-of-the-art algorithm for performing term extraction in the Indonesian Language using noun phrase chunking.
Aspect Based Sentiment Analysis Marketplace Product Reviews Using BERT, LSTM, and CNN Syaiful Imron; Esther Irawati Setiawan; Joan Santoso; Mauridhi Hery Purnomo
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 3 (2023): Juni 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i3.4751

Abstract

Bukalapak is one of the largest marketplaces in Indonesia. Reviews on Bukalapak are only in the form of text, images, videos, and stars without any special filters. Reading and analyzing manually makes it difficult for potential buyers. To help with this, we can extract this review by using aspect-based sentiment analysis because an entity cannot be represented by just one sentiment. Several previous research stated that using LSTM-CNN got better results than using LSTM or CNN. In addition, using BERT as word embedding gets better results than using word2vec or glove. For this reason, this study aims to classify aspect-based sentiment analysis from the Bukalapak marketplace with BERT as word embedding and using the LSTM-CNN method, where LSTM is for aspect extraction and CNN for sentiment extraction. Based on testing the LSTM-CNN method, it gets better results than LSTM or CNN. The LSTM-CNN model gets an accuracy of 93.91%. Unbalanced dataset distribution can affect model performance. With the increasing number of datasets used, the accuracy of a model will increase. Classification without using stemming on datasets can increase accuracy by 2.04%.
PENCARIAN BERITA BAHASA INDONESIA MENGGUNAKAN METODE GENERALIZED VECTOR SPACE MODEL (GVSM) Syaiful Huda; Joan Santoso
NJCA (Nusantara Journal of Computers and Its Applications) Vol 5, No 2 (2020): Desember 2020
Publisher : Computer Society of Nahdlatul Ulama (CSNU) Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36564/njca.v5i2.204

Abstract

Berita bisa dating atau diperoleh dari mana saja, semisal dari teman, guru, atau media elektronik seperti mesinpencari. Salah satu metode yang dapat digunakan untuk membangun mesin pencari adalah Vector Space Model (VSM). Masalah yang muncul adalah terdapat dokumen yang tidak ditemukan padahal mengandung istilah yang berkaitan dengan query. Berdasarkan permasalahan ini diperlukannya sebuah metode yang lebih menyeluruh dalam melakukan pencarian yang tidak hanya terpaku pada ada tidaknya suatu istilah di dalam dokumen. Untuk itu dipilihlah metode GVSM yang diharapkan mampu mengatasi masalah tersebut. Metode Generalized Vector Space Model (GVSM) adalah pengembangan dari VSM yang menambahkan hubungan antar istilah (Semantic Relatedness) dalam melakukan penghitungan kesamaan antara vektor query dengan vektor dokumen. Denganmemperhitungkan relasi antar istilah maka pencarian sebuah dokumen akan lebih luas. Berdasarkan hasil uji coba yang telah dilakukan maka dapat disimpulkan bahwa penerapan metode GVSM belum mampu meningkatkan hasil pencarian berita Bahasa Indonesia dibandingkan dengan metode VSM. Dikarenakan penerapan metode GVSM pada sistem hanya mampu meningkatkan recall dan accuracy saja dengan persentase peningkatan masing-masing sebesar 30% dan 0.16%. Sedangkan precision memiliki nilai yang lebih rendah 11,17% dari pada metode VSM.
Self-Training Naive Bayes Berbasis Word2Vec untuk Kategorisasi Berita Bahasa Indonesia Joan Santoso; Agung Dewa Bagus Soetiono; Gunawan; Endang Setyati; Eko Mulyanto Yuniarno; Mochamad Hariadi; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 7 No 2: Mei 2018
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1455.318 KB)

Abstract

News as one kind of information that is needed in daily life has been available on the internet. News website often categorizes their articles to each topic to help users access the news more easily. Document classification has widely used to do this automatically. The current availability of labeled training data is insufficient for the machine to create a good model. The problem in data annotation is that it requires a considerable cost and time to get sufficient quantity of labeled training data. A semi-supervised algorithm is proposed to solve this problem by using labeled and unlabeled data to create classification model. This paper proposes semi-supervised learning news classification system using Self-Training Naive Bayes algorithm. The feature that is used in text classification is Word2Vec Skip-Gram Model. This model is widely used in computational linguistics or text mining research as one of the methods in word representation. Word2Vec is used as a feature because it can bring the semantic meaning of the word in this classification task. The data used in this paper consists of 29,587 news documents from Indonesian online news websites. The Self-Training Naive Bayes algorithm achieved the highest F1-Score of 94.17%.
Co-Authors Aditya Dwi Aryanto Adriel Ferdianto Agung Dewa Bagus Soetiono Ahmad Syaifuddin Ali Djamhuri Ananta Tio Putra Andik Jatmiko Anita Guterres Bayu Anggara Putra Budi Irawan Chandra, Francisca H. Christian Nathaniel Purwanto Devi Dwi Purwanto Dewi, Nindian Puspa Dipa, Sasra Edwin Pramana Eka Rahayu Setyaningsih Eko Mulyanto Yuniarno Elizabeth Shirley, Stephanie Endang Setyati Ernest Lim Esther Irawati S. Esther Irawati Setiawan Esther Irawati Setiawan Eunike Kardinata F.X. Ferdinandus Fachrul Kurniawan Febriantoro, Erfan Francisca Chandra Fujisawa, Kimiya Gunawan Gunawan Gunawan Gunawan Gunawan Gunawan Hans Juwiantho Hans Keven Budi Prakoso Hartarto Junaedi Hendrawan Armanto Heppi Siswanto Herman Budianto Imron, Syaiful Indra Maryati Jatmiko, Andik Kristian Indradiarta Gunawan Kristina, Natalia Kurniawan S, Putu Widiarsa Langgeng, Yudo Sembodo Hastoro Leonel Hernandez Luhfita Tirta Lukman Zaman Machfudin, Mohammad Farid Mauridhi Hery Purnomo Miftah Farid Mochamad Hariadi Muhammad Amfahtori Wijarnoko Mustaqin, Farhan Faisal Zainul Nagari, Widean Nikko Riestian Putra Wardoyo Nindian Puspa Dewi Ong, Hansel Santoso Patrick Sutanto Reddy Alexandro Harianto Ricky Sutanto Rossy P. C. Rully Widiastutik Samuel Budi Wardhana Kusuma Saputra, Daniel Gamaliel Setya Ardhi Soetiono, Agung Dewa Bagus Stefanie Hilda Kusumahadi Stella Vania Surya Sumpeno Syabith Umar Ahdan Syaiful Huda Syaiful Imron Tjendika, Patrick Tjwanda Putera Gunawan Tri Septianto Tuesday saka gustaf Ubaidi Ubaidi Ubaidi, Ubaidi Yosi Kristian