Claim Missing Document
Check
Articles

Found 12 Documents
Search

PEMBELAJARAN SPLTV DENGAN KONTEKS MANIK-MANIK UNTUK SISWA SMK TATA BUSANA asfyra, intan; rumite, wayan
Nabla Dewantara: Jurnal Pendidikan Matematika Vol. 10 No. 2 (2025): Nabla Dewantara: Jurnal Pendidikan Matematika
Publisher : FKIP Universitas Tamansiswa Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51517/nabla.v10i2.595

Abstract

Penelitian ini bertujuan mendeskripsikan implementasi pembelajaran Sistem Persamaan Linier Tiga Variabel (SPLTV) berbasis konteks manik-manik serta menganalisis kemampuan siswa dalam memodelkan permasalahan produksi ke dalam bentuk matematis. Pendekatan yang digunakan adalah Pendidikan Matematika Realistik Indonesia (PMRI) dengan mempertimbangkan relevansi konteks vokasional program keahlian Tata Busana di SMK. Penelitian menggunakan metode deskriptif kualitatif dengan subjek 30 siswa kelas X Program Keahlian Tata Busana di salah satu SMK Negeri Palembang. Data dikumpulkan melalui observasi berbasis karakteristik PMRI, dokumentasi LKPD, serta wawancara dengan guru dan siswa. Hasil penelitian menunjukkan bahwa pembelajaran SPLTV melalui konteks manik-manik mampu memfasilitasi proses matematisasi horizontal, di mana siswa mengubah situasi nyata menjadi model matematika, dan dilanjutkan dengan matematisasi vertikal saat menyelesaikan SPLTV menggunakan metode eliminasi atau substitusi. Muncul lima karakteristik PMRI dalam pembelajaran, yaitu penggunaan konteks, matematisasi progresif, self-developed models, kontribusi siswa, dan interaktivitas. Hasil tes menunjukkan 85% siswa mampu menyelesaikan SPLTV dengan benar dan menafsirkan solusi sesuai konteks produksi. Wawancara mengungkapkan bahwa siswa merasa lebih mudah memahami materi karena konteks pembelajaran dekat dengan aktivitas vokasional mereka. Dengan demikian, penggunaan pendekatan PMRI berbasis konteks manik-manik efektif dalam meningkatkan pemahaman konsep SPLTV sekaligus mendukung pembentukan kompetensi program keahlian siswa SMK
Error analysis of vocational students in solving linear equation problems Intan Buhati Asfyra; Wayan Rumite; Syamsinar; Halil Arianto
LINEAR: Journal of Mathematics Education Vol. 7 No. 1 (2026): Volume 7 Nomor 1 June 2026
Publisher : Fakultas Tarbiyah dan Ilmu Keguran IAIN Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32332/edfptp64

Abstract

Difficulties in understanding algebraic concepts often lead vocational high school students to make systematic errors in solving linear-equation problems. This study analyzes the types and causes of students’ errors in solving One-Variable Linear Equations (PLSV) and Two-Variable Linear Equation Systems (SPLDV). A qualitative descriptive design was used with purposive sampling involving 25 tenth-grade Fashion Design students at SMKN 6 Palembang who had completed introductory algebra units. Instruments consisted of six problem-solving items on PLSV and SPLDV; their content validity was established through expert review and pilot testing, followed by item refinement. Data were analyzed using Miles and Huberman’s interactive model with a predefined coding scheme developed from literature-based error categories. The analysis included error identification, code assignment, category confirmation through coder agreement checks, data display, and conclusion drawing. Five dominant error types emerged: (1) equation-manipulation errors rooted in procedural “transposing” without conceptual grounding, (2) misapplication of the distributive property and negative signs, (3) modeling errors when translating word problems, (4) integer-operation errors, and (5) failure to connect results to context. The findings show intertwined conceptual and procedural difficulties. Practical implications include structured learning sequences in which teachers first build conceptual schemas through visual representations, then guide students in modeling real-world scenarios using modeling templates, and finally implement reflective routines such as error-analysis sheets and justification prompts to consolidate understanding and reduce algebraic errors.