Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : REKAYASA

Analysis of the Use of Random Forest Models to Measuring the Quality of Indonesian Higher Education Institutions Wiyono, Masdar; Crysdian, Cahyo; Hariyadi, Mokhamad Amin; Abidin, Zainal; Almais, Agung Teguh Wibowo
Rekayasa Vol 18, No 3: Desember, 2025
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/rekayasa.v18i3.32024

Abstract

This study investigates the performance of the Random Forest algorithm in measuring the quality of Higher Education Institutions (HEIs) in Indonesia. The current reliance on administrative evaluations and conventional accreditation processes often fails to capture the institutions’ actual performance comprehensively, indicating the need for a data-driven alternative. This research proposes the use of a Random Forest–based classification model to assess institutional quality based on relevant accreditation indicators. The RF-D model demonstrates optimal classification performance across three quality categories—Good, Very Good, and Excellent—with high precision, recall, and F1-scores for all classes. The Very Good category achieves a precision of 89% and a recall of 80%, while the Excellent category records the highest recall at 86%. Furthermore, the Area Under Curve (AUC) scores, which approach 1.0 for all categories, confirm the strong discriminative capability of the model. This study also highlights the influence of train–test data ratios on model stability. Extreme imbalances in data splitting can lead to overfitting or underfitting, emphasizing the importance of selecting an appropriate configuration during model development. Overall, the findings indicate that Random Forest, when optimized with suitable parameters, provides a more accurate, objective, and replicable approach for evaluating HEI quality in Indonesia. These results are expected to contribute to the development of a more transparent higher education assessment system and support data-driven decision-making among policymakers.
Co-Authors A Basid, Puspa Miladin Nuraida Safitri A'la Syauqi AA Sudharmawan, AA Abd. Rouf Abdurrosyid, R. Adi Susilo Adinda Dhea Pramitha Afiq Budiawan Agus Naba Ainafatul Nur Muslikah Ainul Yaqin Akbar Roihan Akkad, Muhammad Iqbal Alif Pahlevi, Achmad Fahreza Alviola, Nuril Afni Anis Fatul Fu'adah Anisa Anisa Aniss Fatul Fu'adah Aprilia, Faridha Arief, Yunifa Miftachul Artimordika, Firgy Aulia A’la Syauqi Brawijaya, Fanny Bunga Puspita, Mayang Cahyo Crysdian Dyah Ayu Wiranti Dyah Febriantina Istiqomah Dyah Wardani Fajrin, Rahma Annisa Farhanah, Nisrina Darin Fresy Nugroho Habibiy Idmi, Mohammad Halimahtus Mukminna, Halimahtus Hariyadi, Mokhammad Amin Jesi Alexander Alim Jesi Alexander Alim Juhari Juhari, Juhari Khadijah Fahmi Hayati Holle Kurnia Siwi Kinasih Kurniawan, Puan Maharani Kusuma, Selvia Ferdiana Laela Nurul Qomariyah Mandiro, Mulia Anton Mochamad Imamudin Moechammad Sarosa Mokhamad Amin Hariyadi Muhammad Aji Pangestu Muhammad Aziz Muslim Muhammad Fathur Rouf Hasan Mulia Anton Mandiro Musa Thahir Muwardi Sutasoma Neni Hermita Ningtias, Nadila Oktavia Pizaini Pizaini Putri Purnamasari Rahmatmulya, Revaldi Ramadan, Afrijal Rizqi Ramadhan, Rizal Furqan Ririen Kusumawati Roro Inda Melani Safitri, Annisa Heparyanti Sa’adah Rahmaningtyas, Nilmadiana Nur Shinta Rizki Firdina Sugiono Sri Herwiningsih Suhartono Sukir Maryanto Syahiduz Zaman Syauqi, A'la Syauqi, A’la Syawab, Moh Husnus Tanti Rismawati Thahir, Musa Tommy Tanu Wijaya Totok Chamidy Vebrianto, Rian Wardana, M. Dafa Wiyono, Masdar Zainal Abidin