Claim Missing Document
Check
Articles

Found 26 Documents
Search

CHARACTERISTICS OF BAGASSE BIOCHAR IN INDUSTRIAL SCALE PRODUCTION Kuncara, Jaka; Setyawan, Martomo; Hakika, Dhias Cahya
Prosiding Seminar Nasional dan Call Paper STIE Widya Wiwaha Vol 3 No 1 (2024): International Seminar Proceedings and Call for Paper STIE Widya Wiwaha
Publisher : Sekolah Tinggi Ilmu Ekonomi Widya Wiwaha

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bagasse is a waste that can still be processed into more useful materials, in this case it will be processed into biochar. The bagasse used is sugarcane milling waste from a sugar factory in Majalengka, Cirebon, West Java. The pyrolysis process is carried out at the biochar factory of PT XXX which is also located in the area. Making biochar with an industrial-scale pyrolysis reactor namely the rotary carbonization furnace reactor. The main components are a bagasse feeder system, rotary drum dryer, pyrolysis reactor, fan and condenser. The system operates in line from the feeder to the biochar output. The purpose of this research is to investigate the pyrolysis of bagasse in a rotary horizontal carbonization furnace reactor to study the effect of pyrolysis process parameters in the form of temperature and residence time on the product characteristics of biochar. The tests provided results that the residence time has an effect on the proximate and ultimate analysis of biochar. The results showed that with increasing residence time, the volatile meter, hydrogen and oxygen decreased while the ash content, fixed carbon, carbon and gross calories increased. The test also provides results that temperature affects the proximate and ultimate analysis of biochar. The results show that as the pyrolysis temperature increases, the parameters of ash content, fixed carbon and gross calory increase while the parameters of volatile metter, hydrogen and oxygen decrease. The morphological structure of biochar changes with increasing pyrolysis temperature and the results showed that the higher the pyrolysis temperature, the larger the diameter of the biochar pores.
Manufacture of Industrial Scale Bagasse Biochar: Effect of Temperature And Residence Time And Biochar Characterization Jaka Kuncara; Martomo Setyawan; Dhias Cahya Hakika
Equilibrium Journal of Chemical Engineering Vol 8, No 2 (2024): Volume 8, No 2 December 2024--Online First
Publisher : Program studi Teknik Kimia UNS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/equilibrium.v8i2.95545

Abstract

Abstract. Bagasse is a waste that can still be utilized, one of which is processed into biochar. In this study, bagasse waste came from a sugar factory in Majalengka, Cirebon, West Java. The bagasse pyrolysis process was carried out at PT XXX biochar factory located in the area. Industrial scale biochar production is done by Rotary Carbonization Furnace. The research objective was to characterize biochar with variable residence time and pyrolysis temperature. Biochar was characterized based on physicochemical properties and surface composition analysis for use as a soil improver and adsorbent. The test results show that residence time and pyrolysis temperature affect biochar products. Physical characterization showed that the pyrolysis residence time of 24.73 minutes with a temperature of 400 oC gave biochar results with pH (8.92), c-organic (24.15%), total N (0.2%), P2O5 (0.17%) and high C/N ratio (1,208.00). This biochar has good quality for application as a soil improver, especially in increasing carbon storage capacity and improving soil pH. The high C/N ratio and low nitrogen content require alloying with other sources to increase nitrogen and phosphorus and lower the C/N ratio. Chemical characterization by BET test showed that pyrolysis residence time of 24.73 min at 400 oC gave the best results in terms of increasing surface area (0.554 m²/g) and pore volume (0.00364 cc/g), making it the optimal temperature to produce biochar with high adsorption capacity. Surface characterization by SEM-EDX mapping analysis showed that the pyrolysis residence time of 24.73 min at 400 oC gave results with relatively high composition of carbon (82.17%), oxygen (14.89%), silica (1.97%), potassium (0.42%), and made it more effective for soil conditioner applications.Keywords: Bagasse, Biochar, Pyrolysis.
Effect of Flow Rate Ratio of Air and Waste Cooking Oil on Combustion Temperature and Furnace Efficiency M. Idris; Martomo Setyawan; Totok Eka Suharto
Eksergi Vol 22 No 1 (2025)
Publisher : Prodi Teknik Kimia, Fakultas Teknik Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/eksergi.v22i1.13554

Abstract

Using waste cooking oil as an alternative fuel can reduce dependence on fossil fuels and address the problem of waste oil. This study aims to analyze the effect of the flow rate ratio of air and waste cooking oil on combustion characteristics and efficiency of domestic furnace. The experiment started with fuel characterization, including density, viscosity, flash point, and calorific value tests. The combustion process was carried out by varying the fuel and airflow to the furnace. Experiments included flame temperature measurements, water boiling tests, and measurements of heat uptake efficiency by the pot water. The results showed that the highest combustion temperature of 925.55℃ was achieved at an airflow rate of 21.3 m/s with a fuel flow rate of 1.05 L/hour. The flue gas emission temperature and furnace efficiency increased as the airflow rate and fuel discharge increased. The ratio also produces the fastest water boiling time of 2 minutes with the efficiency of heat uptake by water in the pot of 34.12%. The highest heat uptake efficiency by the water in the pot was obtained at the ratio of used cooking oil discharge of 0.6 L/hour with an airflow rate of 12.1 m/s at 43.12%. These results demonstrate the potential of waste cooking oil as an alternative fuel for efficient domestic combustion devices, with proper air supply to achieve optimal combustion.
KARAKTERISTIK REAKTOR HIDROGENASI MINYAK BIJI KAPUK UNTUK PEMBUATAN GREEN DIESEL Siti Salamah; Martomo Setyawan
Spektrum Industri Vol. 11 No. 1: April 2013
Publisher : Universitas Ahmad Dahlan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/si.v11i1.1637

Abstract

Green diesel merupakan salah satu solusi mengatasi kebutuhan bahan bakar diesel yang semakin meningkat, green diesel merupakan minyak diesel yang berasal dari hidrogenasi minyak nabati yang memiliki kualitas lebih baik dibandingkan biodiesel dan ramah lingkungan. Proses hidrogenasi minyak nabati menjadi green diesel dirancang di reaktor yang beroperasi pada suhu 250 0 C dan tekanan 10 atm, untuk beroperasi pada suhu dan tekanan tersebut maka perlu diketahui karakter reaktor juga suhu pemanasnya. Penelitian ini dilakukan dengan merancang reaktor hidrogenasi dan merancang pemanas reaktor juga uji temperatur pemanas.Pemanas listrik disambungkan dengan regulator tegangan, termokopel dipasang pada batu penahan panas tepat di atas elemen pemanas. Regulator diputar pada tegangan 100 volt, perubahan suhu dicatat tiap 5 menit, percobaan dihentikan apabila suhu sudah konstan , percobaan diulangi untuk tegangan 125,150,175,200 dan 225 volt. Percobaan diulang untuk mempelajari karakter perpindahan panas ke reaktor. Hasil dari penelitian ini adalah reaktor hidrogenasi dirancang dari bahan stainless steel, beroperasi pada temperatur 250 0 C dengan tekanan 10 atm, Spesifikasi reaktor sebagai berikut : volume cairan 2 liter, tinggi reaktor 31 cm, diameter luar 15 cm dan diameter dalam 10 cm. Reaktor tabung ini dilihat dari persyaratan suhu dan kebutuhan panas dapat digunakan sebagai reaktor untuk hidrogenasi minyak biji kapuk. Pemanasan di reaktor dapat mencapai suhu 2400 C dengan menggunakan tegangan 175 Volt. . Kata kunci : Karakteristik , Reaktor hidrogenasi , Green diesel
Pembuatan Arang Aktif dari Tempurung Kelapa dan Aplikasinya untuk Penjernihan Asap Cair Siti Jamilatun; Martomo Setyawan
Spektrum Industri Vol. 12 No. 1: April 2014
Publisher : Universitas Ahmad Dahlan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/si.v12i1.1651

Abstract

Arang aktif merupakan senyawa karbon amorph, yang dapat dihasilkan dari bahan-bahan yang mengandung karbon atau dari arang yang diperlakukan dengan cara khusus untuk mendapatkan permukaan yang lebih luas. Arang aktif dapat mengadsorpsi gas dan senyawa-senyawa kimia tertentu atau sifat adsorpsinya selektif, tergantung pada besar atau volume pori-pori dan luas permukaan.. Arang aktif akan dibuat dari arang hasil pirolisis tempurung kelapa.dan diimplementasikan untuk menjernihkan asap cairnya. Adapun langkah yang pertama membuat arang aktif dari tempurung kelapa adalah, membuat arang tempurung kelapa dengan membersihkan tempurung kelapa terlebih dahulu dari bahan-bahan pengotor seperti tanah, kerikil. Kemudian mengeringkannya dibawah sinar matahari, selanjutnya membakar tempurung kering pada drum/bak pembakaran dengan suhu 300-500 0C selama 3-5 jam. Langkah yang kedua adalah arang hasil pembakaran direndam dengan bahan kimia CaCl2 dan ZnCl2 (kadar 25 %) selama 12 sampai 24 jam untuk menjadi arang aktif. Selanjutnya melakukan pencucian dengan air suling/air bersih hingga kotoran atau bahan ikutan dapat dipisahkan. Arang aktif basah dihamparkan pada rak dengan suhu kamar untuk ditiriskan, kemudian dikeringkan dalam oven pada suhu 110 – 8000C selama 3 jam. Suhu aktivasi mempengaruhi kualitas karbon aktif yang terbentuk. Dari uji kualitas karbon aktif yang dilakukan, kualitas karbon aktif yang terbaik diperoleh pada suhu 800oC dengan kadar air 1,3 %, kadar abu 0,60 % memenuhi standar SII 0258-79 dan memiliki daya serap terhadap kadar iod sebesar 580,0 mg/g yang memenuhi standar SNI 06-3730. Penjernihan air limbah rumah tangga, air berwarna menggunakan karbon aktif dari suhu aktivasi 800oC menghasilkan air yang jernih, tidak berbau dan memenuhi pH standar air (7,0-7,5). Key words : Asap cair, tempurung kelapa, pirolisis, arang aktif
Energy efficient direct transesterification of Nannochloropsis sp. using hydrodynamic cavitation Nirmalasari, Jiran; Setyawan, Martomo; Jamilatun, Siti; Pitoyo, Joko; Hakika, Dhias Cahya
International Journal of Advances in Applied Sciences Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v14.i2.pp394-405

Abstract

The increasingly limited supply of fossil fuels requires renewable fuel as an alternative source. Nannochloropsis sp. is a microalgae species containing a lipid content of between 12 and 53%, which can be converted to biofuel as an alternative source of fossil fuels through a transesterification process. Up to this date, the literature has reported no studies on biodiesel production from Nannochloropsis sp. via direct transesterification with catalyst using hydrodynamic cavitation. The direct transesterification process introduced 7.5 g of microalgae, 40 ml of methanol, 90 ml of hexane, and 0.0225 g of sodium hydroxide into the sample chamber. These mixtures were passed within the cavitation using a pressure driver and transformed into fatty acid methyl ester (FAME). The catalytic hydrodynamic cavitation method produces a higher extract yield than the stirring one. Regarding the FAME composition, the catalytic hydrodynamic cavitation method is dominated by saturated fatty acid (palmitic), while the stirring catalytic method is dominated by monounsaturated fatty acid (oleic). The hydrodynamic cavitation method provides a lower average degree of unsaturation and shorter chain length than the stirring catalytic method.