p-Index From 2020 - 2025
5.626
P-Index
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Artificial Intelligence and Data Mining

Early Detection of Dengue Hemorrhagic Fever Using Patient Medical Data with Ensemble Learning Methods Saleh, Achmad; Mukhtar, Ridha; Rusdah, Rusdah
Indonesian Journal of Artificial Intelligence and Data Mining Vol 8, No 3 (2025): November 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v8i3.38088

Abstract

Dengue Hemorrhagic Fever (DHF) remains a major public health concern in Indonesia and worldwide, where delayed diagnosis increases the risk of severe complications and mortality. Conventional laboratory-based diagnostics are time-consuming and often less accessible in resource-limited healthcare settings. This study aims to develop an early detection model for DHF using only initial clinical symptoms and demographic data extracted from electronic medical records at RSUD Brigjend H. Hasan Basry Kandangan. A total of 649 patient records (352 DHF cases and 297 non-dengue) were analyzed using the CRISP-DM framework. Five ensemble learning algorithms Random Forest, Bagging, AdaBoost, and Gradient Boosted Tree were evaluated across 80:20, 70:30, and 60:40 data splits and validated using 5-fold and 10-fold cross-validation. Random Forest consistently delivered the best and most stable performance, achieving up to 90.00 % accuracy and 0.967 AUC in the 80:20 split and mean accuracies of 88.91 % (5-fold) and 88.29 % (10-fold) in cross-validation. Further hyperparameter tuning enhanced model stability and prevented overfitting. The findings confirm that initial clinical symptoms and demographic attributes can reliably identify DHF cases early, enabling faster and more affordable screening prior to laboratory confirmation. This machine learning based decision-support model has the potential to significantly improve early clinical management of dengue fever.
Co-Authors Abdulhakim Madiyoh Achmad Saleh Achmad Solichin Afrianto, Whisnu Febry Ahadti Puspa Sari Alfad Zebua, Vivid Kristiani Andi Andara Andi Rukmana Anidnya Putri Pradiptha Anita Diana Anubhakti, Dian Ary Maulana Pratama Aryabima, Muhammad Iqbal Bregastantyo, Brian Agni Brury Trya Sartana Budiyoko, Budiyoko Deasy Aprilla Wulandari Deni Mahdiana Devit Setiono Dewi Kusumaningsih Diwi Apriana Dwi Achadiani Dwi Kristanto Eka Dewi Satriana Elfy Susanti Ernita Rahayu Fauzan, Muhammad Rafi Hari Soetanto Haris Kurniawan, Haris Hin, Law Li Humisar Hasugian Ilham Akbar Muharrom Ilyas, Aldrin Nur Imam Halim Mursyidin Indah Puspasari Handayani Indra Nugraha Irawati, Riri Izzati, Fildza Joko Christian Chandra Joko Sutrisno Juliasari, Noni Kardena, Sucinda Kirana, Anindya Sasi Kusumaningsih, Dewi Lauw Li Hin Linda Ratna Sari Lis Suryadi, Lis Luhur Bayuaji, Luhur Mahesworo Langgeng Wicaksono Marimin , Mawarni, Ajeng Citra Mehmet Sıtkı ā°lkay Mohammad Syafrullah Muhamad Sobirin Jamil Muhammad Fauzan Hadi Saputra Muhammad Rifqi Mukhtar, Ridha Painem, Painem Painem, Painem Patlisan, Patlisan Pebrianti, Dwi Prayoga, Adistiar Pudoli, Ahmad Purwanto Purwanto Putri, Ine Widyaningrum Mustama Raden Rahmad Rafi Naufal AlBasri Rahmat Fajar Rahmawati Alvira Rahmawati, Fadilla Salsabila Raissa, Benita Hasna Ratna Ujiandari Renaldi Setiawan Putra Rizky Pradana, Rizky Roeswidiah, Ririt Rohmad Atkha Rosyadi, Ibnu Fallah Ruwirohi, Jan Everhard Setyawan Widyarto Shintya Yulianti Sri Hanafi Sri Wahyuningsih Subandi, Nurul Arifin Supardi Supardi Susi Widyawati Tri Annisa Hidayati Triana Anggraini Yulianawati Yulianawati Yulianawati Yulianawati Yuliazmi, Yuliazmi Zaqi Kurniawan