Claim Missing Document
Check
Articles

Found 35 Documents
Search

Artificial Intelligence Integration: Error Self-Reflection in Solving Integral Problems Uripno, Gusti; Suprihatiningsih, Siti; Rangkuti, Rizki Kurniawan
AlphaMath : Journal of Mathematics Education Alphamath: Vol. 10, No. 2, November 2024
Publisher : Department of Mathematics Education, Universitas Muhammadiyah Purwokerto, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/alphamath.v10i2.23133

Abstract

Integrity has had plenty of impact on human civilization development, especially in the development of human technology. The primary role of an integral is not well supported by students’ skill in solving integral problems. Due to this fact, mathematics educators need solutions. Artificial Intelligence (AI) integration is one of the solutions that mathematics educators can choose. This qualitative descriptive research aims to explore students' mistakes in solving integral problems with the help of  Photomath. This research will describe student mistakes and explain how students realize mistakes during rework assisted by Photomath. This research involved ten mathematics students who joined an integral course at a university in Indonesia. The errors were analyzed based on Newman error analysis. Errors found based on research results include (1) Comprehension and transformation, (2) Process skills, and (3) Encoding. This research found that comprehension errors have implications for transformation. Students who make comprehension errors will cause transformation errors. Meanwhile, the subject's errors in the previous stage affect the encoding stage. Apart from the errors already mentioned, errors were also found due to carelessness, which was not a significant part of Newman's error analysis.
Analysis of Mathematical Logic and Computational Thinking Abilities of Informatics Engineering Students on Learning Achievement in Calculus Courses Triana Harmini; Siti Suprihatiningsih
Mosharafa: Jurnal Pendidikan Matematika Vol. 13 No. 4 (2024): October
Publisher : Department of Mathematics Education Program IPI Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/mosharafa.v13i4.1787

Abstract

Abstrak Penelitian ini bertujuan untuk mengkaji hubungan antara kemampuan logika matematika dan berpikir komputasional dengan prestasi belajar mahasiswa dalam mata kuliah Kalkulus. Studi ini melibatkan 66 siswa semester pertama Program Studi Teknik Informatika pada tahun akademik 2022/2023.  Tes untuk mengukur kemampuan berpikir logika dan komputasional serta instruksi untuk mengumpulkan data tentang prestasi belajar adalah bagian dari metode pengumpulan data. Analisis data dilakukan menggunakan korelasi Pearson bivariat dan regresi linear berganda, dengan pengujian prasyarat yang mencakup uji normalitas, homoskedastisitas, multikolinearitas, dan autokorelasi. Hasil analisis menunjukkan terdapat hubungan yang signifikan antara berpikir komputasional dengan prestasi belajar (r = 0,715), antara logika matematika dengan prestasi belajar (r = 0,781), serta antara berpikir komputasional dan logika matematika (r = 0,661). Temuan ini mengindikasikan pentingnya integrasi kemampuan logika matematika dan berpikir komputasional dalam proses pembelajaran Kalkulus, yang dapat diupayakan melalui pendekatan pedagogis yang tepat serta pengembangan media pembelajaran yang mendukung. Abstract This study aims to examine the relationship between mathematical logic skills and computational thinking with students' academic performance in the Calculus course. This study involved 66 first-semester students of the Computer Engineering Study Program in the 2022/2023 academic year. Tests to measure logical and computational thinking abilities, as well as instructions for collecting data on learning achievements, are part of the data collection methods. Data analysis was conducted using bivariate Pearson correlation and multiple linear regression, with prerequisite tests including normality, homoscedasticity, multicollinearity, and autocorrelation tests. The analysis results show a significant relationship between computational thinking and academic achievement (r = 0.715), between mathematical logic and academic achievement (r = 0.781), as well as between computational thinking and mathematical logic (r = 0.661). These findings indicate the importance of integrating mathematical logic skills and computational thinking in the learning process of Calculus, which can be pursued through appropriate pedagogical approaches and the development of supportive learning media.
Exploring Students' Visualization Skills concerning Learning Styles Konstansia Hermiati; Nasri Tupulu; Siti Suprihatiningsih
Mosharafa: Jurnal Pendidikan Matematika Vol. 13 No. 4 (2024): October
Publisher : Department of Mathematics Education Program IPI Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/mosharafa.v13i4.1970

Abstract

Abstrak Kemampuan visualisasi merupakan aspek krusial dalam memahami materi dimensi tiga. Tujuan penelitian ini yaitu menggambarkan kemampuan visualisasi siswa sekolah menengah atas dalam pembelajaran materi dimensi tiga berdasarkan gaya belajar. Subjek penelitian kualitatif ini dipilih dengan metode purposive sampling. Teknik pengumpulan data menggunakan tes essay berdasarkan indikator ketrampilan visualisasi. Teknik analisis data meliputi pengumpulan data, kategorisasi data, penyajian data dan penarikan kesimpulan. Hasil penelitian menunjukkan kemampuan visualisasi siswa berbeda berdasarkan gaya belajar. Siswa dengan gaya belajar visual menunjukkan kemampuan visualisasi yang sangat baik yaitu menyelesaian masalah, pencarian pola, pengonsepan, pengimajinasian, dan memvisualkan. Siswa dengan gaya belajar auditori menyelesaikan masalah, pencarian pola, dan memvisualkan, namun belum optimal dalam pengimajinasian dan pengonsepan. Siswa dengan gaya belajar kinestetik menyelesaian masalah dan pencarian pola, sedangkan mengimajinasikan hanya tercapai sebagian, dan pengonsepan serta memvisualkan belum terpenuhi secara memadai. Temuan ini menunjukkan adanya hubungan erat antara gaya belajar dan pencapaian kemampuan visualisasi dalam memahami materi dimensi tiga. Abstract Visualization ability is a crucial aspect in understanding three-dimensional material. The purpose of this study is to describe the visualization ability of high school students in learning three-dimensional material based on learning styles. The subjects of this qualitative study were selected using the purposive sampling method. The data collection technique used an essay test based on visualization skill indicators. Data analysis techniques include data collection, data categorization, data presentation and drawing conclusions. The results of the study showed that students' visualization abilities differed based on learning styles. Students with a visual learning style showed very good visualization abilities, namely solving problems, finding patterns, conceptualizing, imagining, and visualizing. Students with an auditory learning style solved problems, finding patterns, and visualizing, but were not optimal in imagining and conceptualizing. Students with a kinesthetic learning style solved problems and searching for patterns, while imagining was only partially achieved, and conceptualizing and visualizing had not been adequately fulfilled. These findings indicate a close relationship between learning styles and the achievement of visualization abilities in understanding three-dimensional material.
Analysis of Artificial Intelligence Assisted Proof Process Through Principle of Mathematical Induction in Real Analysis Course Lestari, Isnawati Lujeng; Sari, Mayang; Uripno, Gusti; Suprihatiningsih, Siti; Hariyanti, Firda; Bonyah, Ebenezer
Journal of Mathematical Pedagogy (JoMP) Vol. 6 No. 2: July 2025
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jomp.v6n2.p94-102

Abstract

The low proficiency of Mathematics Education students in constructing mathematical proofs, especially using the principle of mathematical induction, highlights the need for enhanced learning approaches. One promising method is the integration of Artificial Intelligence (AI) into the proof process within Real Analysis courses. This study aims to describe how students carry out mathematical induction proofs with the assistance of AI. Ten voluntary students enrolled in Real Analysis participated in an initial test involving divisibility problem. From this group, two students were selected through maximum variation sampling based on their answer diversity and communication skills. One student employed a modulo-based approach, while the other used the divisibility-definition concept. Overall, the results demonstrate that AI significantly supports students in understanding problems, planning proofs, implementing strategies, and revising their reasoning. AI played a critical role in concept generation, solution evaluation, and embedded reflection across each stage of Polya’s problem-solving framework, combined with the three aspects of AI-assisted proof: construction, evaluation, and revision
Analisis Kemampuan Literasi Statistik Mahasiswa dalam Penyelesaian Masalah Statistika Marfuah, Iim; Suprihatiningsih, Siti; Kurniawan, Indra
Konstruktivisme : Jurnal Pendidikan dan Pembelajaran Vol 17 No 2 (2025): Juli 2025
Publisher : Universitas Islam Balitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35457/konstruk.v17i2.4648

Abstract

Penelitian ini bertujuan untuk menganalisis kemampuan literasi statistik mahasiswa dalam menyelesaikan permasalahan statistika. Penelitian ini menggunakan pendekatan kualitatif deskriptif untuk menganalisis kemampuan literasi statistik. Subjek penelitian adalah 25 mahasiswa semester 3 Th 2024/2025 Universitas Indraprasta PGRI Jakarta. Instrumen yang digunakan berupa tes uraian terkait materi statistika dasar. Analisis yang dilakukan adalah ditinjau dari kategori kemampuan literasi statistik tinggi, sedang dan rendah. Hasil penelitian menunjukkan bahwa 16% mahasiswa berada pada kategori kemampuan tinggi, 60% pada kategori sedang, dan 24% pada kategori rendah. Kemampuan literasi statistik mahasiswa dengan kemampuan tinggi adalah mampu membaca, menafsirkan, dan mengkomunikasikan data secara baik, meskipun masih ditemukan kesalahan minor dalam pembulatan angka. Mahasiswa kategori sedang menunjukkan beberapa kesalahan dalam membaca simbol dan operasi statistik, sedangkan mahasiswa kategori rendah mengalami kesulitan dalam memahami konsep dasar statistika dan pembacaan data. Temuan ini dapat digunakan sebagai acuan para pengajar agar dapat menerapkan pembelajaran sesuai dengan masing-masing kategori kemampuan literasi statistik sehingga mahasiswa dapat penguatan konsep sehingga literasi statistik mahasiswa dapat lebih baik.