p-Index From 2020 - 2025
7.176
P-Index
This Author published in this journals
All Journal Ekonomikawan : Jurnal Ilmu Ekonomi dan Studi Pembangunan Jurnal Akuntansi dan Pajak LINGUISTIK : Jurnal Bahasa dan Sastra JCRS (Journal of Community Research and Service) Jurnal Abdi Ilmu JUMAN Tools (Jurnal Manajemen Tools) Jurnal Pendidikan dan Konseling Jurnal Ilmiah Edunomika (JIE) Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Scientia Budapest International Research and Critics Institute-Journal (BIRCI-Journal): Humanities and Social Sciences Jurnal AKMAMI (Akuntansi Manajemen Ekonomi) Jurnal Ekonomi, Manajemen, Akuntansi dan Keuangan Multidiciplinary Output Research for Actual and International Issue (Morfai Journal) Journal of Research in Social Science and Humanities Proceeding International Seminar of Islamic Studies Jurnal Bina Bangsa Ekonomika Akuntansi'45 EKONOMIKA45 Journal Of Human And Education (JAHE) Comsep : Jurnal Pengabdian Kepada Masyarakat Jurnal Pemberdayaan Sosial dan Teknologi Masyarakat Proceedings of The International Conference on Business and Economics Jurnal Manajemen Dan Akuntansi Medan Jurnal Pengabdian West Science Transaction: Journal of Taxation, Accounting, Management and Economics Journal of Development Economics and Digitalization, Tourism Economics (JDEDTE) Jurnal Pengabdian Masyarakat Ekonomi dan Bisnis Digital Journal of Intelligent Systems and Information Technology International Journal of Economics and Management Sciences International Journal of Economics, Business and Innovation Research International Journal of Management, Economic and Accounting Jurnal Pengabdian Masyarakat (Jubdimas)
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Intelligent Systems and Information Technology

Implementation of Machine Learning Algorithm for Credit Scoring Prediction in Islamic Microfinance Siregar, Kiki Hardiansyah; Ruslan, Dede; Faried, Annisa Ilmi; Sembiring, Rahmad
Journal of Intelligent Systems and Information Technology Vol. 2 No. 2 (2025): July
Publisher : Apik Cahaya Ilmu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61971/jisit.v2i2.156

Abstract

Islamic microfinance institutions face complex challenges in data management and customer behavior prediction in the digital era. This study aims to optimize the Gradient Boosting algorithm with pruning techniques to predict customer collectibility. The analysis was conducted on data from 57 customers with 7 attributes from 2022 to 2024. The research methodology includes four stages: data collection, pre-processing, modeling, and evaluation. Pre-processing involves handling missing data, normalization, encoding, and feature selection. Modeling using XGBoost with and without pruning, followed by evaluation using accuracy, precision, recall, F1-score, confusion matrix, and ROC curve metrics. The results show an increase in model performance with pruning: accuracy increased by 0.70%, precision 0.60%, recall 0.80%, and F1-score 0.70%. This technique is effective in reducing overfitting and increasing model generalization. This research provides significant contribution in developing more accurate credit scoring system for Islamic microfinance institutions, improving credit risk management and customer service in Islamic microfinance sector. The findings help Islamic microfinance institutions optimize credit decision-making process and reduce risk in the digital era.